...
首页> 外文期刊>ACS nano >Reversible Superconductor-Insulator Transition in (Li, Fe)OHFeSe Flakes Visualized by Gate-Tunable Scanning Tunneling Spectroscopy
【24h】

Reversible Superconductor-Insulator Transition in (Li, Fe)OHFeSe Flakes Visualized by Gate-Tunable Scanning Tunneling Spectroscopy

机译:通过栅极可调扫描隧道光谱可视化(Li,Fe)OHFESE薄片中的可逆超导体 - 绝缘体过渡

获取原文
获取原文并翻译 | 示例
           

摘要

Electric field control of charge carrier density provides a key in situ technology to continuously tune the ground states and map out the phase diagram of correlated electron systems in one device. This technique is highly expected to be combined with the modern state-of-the art spectroscopic probes, such as angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy (STM/S), to efficiently address these states and the underlying physics. However, it is extremely difficult and not successful so far, mainly because the fabrication process of such devices makes them prohibitive for surface probes. Here, by using a solid Li-ion conductor (SIC) as gate dielectric, we have successfully developed gate-tunable STM/S and visualized the superconductor- insulator transition (SIT) in a thin flake of single crystal (Li, Fe)OHFeSe at the nanoscale. The gate-controlled Li-ion injection first enhances the superconductivity and then drives the flake into an inhomogeneous insulating state, where superconductivity is totally suppressed. This process can be reversed by applying an opposite gate voltage. Importantly, the atomically resolved images allow us to identify the critical role that the injected Li ions play in the tuning process. Our results not only provide clear evidence of the microscopic mechanism of the tunable superconductivity and SIT in the SIC-based (Li, Fe)OHFeSe devices, but also establish SIC-gating STM as a powerful tool for investigating the complicated phase diagram of correlated electron system spectroscopically in a single sample with the field-effect approach.
机译:电力载波密度的电场控制提供了原位技术的关键,以连续调整地面状态并在一个设备中映射相关电子系统的相位图。该技术高度预期与现代最新的光谱探针相结合,例如角度分辨的光曝光光谱和扫描隧道显微镜/光谱(STM / s),以有效地解决这些状态和潜在的物理学。然而,到目前为止,这是极其困难的并且不是成功的,主要是因为这种装置的制造过程使得它们对表面探针抑制。这里,通过使用固体锂离子导体(SiC)作为栅极电介质,我们已经成功地开发了栅极可调的STM / s,并以单晶(Li,Fe)OHFESE的薄片状(Li,Fe)OHFESE而可视化超导体 - 绝缘体过渡(SIT)在纳米级。栅极控制的Li离子注入首先增强超导性,然后将薄片驱动成非均匀的绝缘状态,其中超导是完全抑制的超导性。通过施加相反的栅极电压,可以反转该过程。重要的是,原子解析图像允许我们识别注射的Li离子在调谐过程中发挥的关键作用。我们的结果不仅提供了可调谐超导性微观机理的明确证据,并坐在基于SiC的(Li,Fe)OHFESE器件中,而且还建立了SiC-Gating STM作为研究相关电子的复杂相图的强大工具系统在单个样本中光谱和现场效应方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号