...
首页> 外文期刊>ACS nano >Intracellular Nanomaterial Delivery via Spiral Hydroporation
【24h】

Intracellular Nanomaterial Delivery via Spiral Hydroporation

机译:通过螺旋水下流体的细胞内纳米材料输送

获取原文
获取原文并翻译 | 示例
           

摘要

In recent nanobiotechnology developments, a wide variety of functional nanomaterials and engineered biomolecules have been created, and these have numerous applications in cell biology. For these nanomaterials to fulfill their promises completely, they must be able to reach their biological targets at the subcellular level and with a high level of specificity. Traditionally, either nanocarrier- or membrane disruption-based method has been used to deliver nanomaterials inside cells; however, these methods are suboptimal due to their toxicity, inconsistent delivery, and low throughput, and they are also labor intensive and time-consuming, highlighting the need for development of a next-generation, intracellular delivery system. This study reports on the development of an intracellular nanomaterial delivery platform, based on unexpected cell-deformation phenomena via spiral vortex and vortex breakdown exerted in the cross- and T-junctions at moderate Reynolds numbers. These vortex-induced cell deformation and sequential restoration processes open cell membranes transiently, allowing effective and robust intracellular delivery of nanomaterials in a single step without the aid of carriers or external apparatus. By using the platform described here (termed spiral hydroporator), we demonstrate the delivery of different nanomaterials, including gold nanoparticles (200 nm diameter), functional mesoporous silica nanoparticles (150 nm diameter), dextran (hydrodynamic diameters between 2-55 nm), and mRNA, into different cell types. We demonstrate here that the system is highly efficient (up to 96.5%) with high throughput (up to 1 X 10(6) cells/min) and rapid delivery (similar to 1 min) while maintaining high levels of cell viability (up to 94%).
机译:在最近的纳米能力发展中,已经产生了各种功能性纳米材料和工程化生物分子,并且这些在细胞生物学中具有许多应用。对于这些纳米材料完全满足其承诺,它们必须能够在亚细胞水平和高度特异性达到其生物学靶标。传统上,基于纳米载体或膜破坏的方法已被用于递送细胞内的纳米材料;然而,由于毒性,不一致的交付和低吞吐量,这些方法是次优,它们也是劳动密集且耗时,突出了开发下一代细胞内输送系统的需求。本研究报告了通过螺旋涡流的意外细胞变形现象和涡旋击穿的意外细胞变形现象的发展报告,在中度雷诺数的交叉和T-结中施加的螺旋涡流和涡流击穿。这些涡旋诱导的细胞变形和顺序恢复瞬时处理开放的细胞膜,允许在没有载体或外部装置的借助于借助于载体或外部设备的单一步骤中的纳米材料的有效和稳健的细胞内递送。通过使用这里描述的平台(称为螺旋流水电泳器),我们证明了不同纳米材料的递送,包括金纳米颗粒(直径),功能性介孔二氧化硅纳米颗粒(150nm直径),葡聚糖(2-55nm之间的流体动力学直径),和mRNA,进入不同的细胞类型。我们在此证明,该系统高效(高达96.5%),高通量(高达1×10(6)个/分钟/分钟)和快速递送(类似于1分钟),同时保持高水平的细胞活力(最多94%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号