...
首页> 外文期刊>ACS nano >Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma
【24h】

Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma

机译:通过牵引,弹簧和扭矩力耦合极性粘附,允许高速螺旋迁移原生动物寄生虫毒素弓形虫

获取原文
获取原文并翻译 | 示例
           

摘要

Among the eukaryotic cells that navigate through fully developed metazoan tissues, protozoans from the Apicomplexa phylum have evolved motile developmental stages that move much faster than the fastest crawling cells owing to a peculiar substrate-dependent type of motility, known as gliding. Best-studied models are the Plasmodium sporozoite and the Toxoplasma tachyzoite polarized cells for which motility is vital to achieve their developmental programs in the metazoan hosts. The gliding machinery is shared between the two parasites and is largely characterized. Localized beneath the cell surface, it includes actin filaments, unconventional myosin motors housed within a multimember glideosome unit, and apically secreted transmembrane adhesins. In contrast, less is known about the force mechanisms powering cell movement. Pioneered biophysical studies on the sporozoite and phenotypic analysis of tachyzoite actin-related mutants have added complexity to the general view that force production for parasite forward movement directly results from the myosin-driven rearward motion of the actin-coupled adhesion sites. Here, we have interrogated how forces and substrate adhesion-de-adhesion cycles operate and coordinate to allow the typical left-handed helical gliding mode of the tachyzoite. By combining quantitative traction force and reflection interference microscopy with micropatterning and expansion microscopy, we unveil at the millisecond and nanometer scales the integration of a critical apical anchoring adhesion with specific traction and spring-like forces. We propose that the acto-myoA motor directs the traction force which allows transient energy storage by the microtubule cytoskeleton and therefore sets the thrust force required for T. gondii tachyzoite vital helical gliding capacity.
机译:在通过完全发育的甲卓蛋白组织中导航的真核细胞中,来自APICOMPLYPA的原生动物已经进化了动机发育阶段,由于依赖于最快的爬网依赖性运动,而被称为滑动的最快爬行细胞。最佳研究的模型是孢子型孢子素和弓形虫噻吨岩偏振细胞,其动力至关重要,以实现其在美化宿主的发展方案。滑动机器在两种寄生虫之间共享,并且在很大程度上表征。本地化在细胞表面下方,它包括肌动蛋白长丝,位于多方面的滑翔机组中的非传统肌蛋白电动机,以及顶部分泌的跨膜粘附素。相反,关于动力机构的发电机运动较少。对孢菌素肌动蛋白相关突变体的孢子沸石和表型分析的开创性的生物物理学研究已经向一般认为寄生虫前进运动的一般性观察结果增加了复杂性,这是由肌动蛋白耦合粘附位点的肌肌素驱动的向后运动直接产生。在这里,我们已经询问了力和基板粘附 - 去粘附循环的操作和坐标,以允许Tachyzoite的典型左手螺旋滑动模式。通过将定量牵引力和反射干扰显微镜与微图分析和膨胀显微镜相结合,我们在毫秒和纳米处揭示了与特定牵引力和弹簧状力的关键顶端锚固粘附的整合。我们提出了Acto-MyoA电动机引导牵引力,使微管骨骼骨骼允许瞬态能量存储,因此设定了T.Gondii Tachyzoite重要螺旋滑动能力所需的推力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号