首页> 外文期刊>ACS nano >Interfacial Electromechanics Predicts Phase Behavior of 2D Hybrid Halide Perovskites
【24h】

Interfacial Electromechanics Predicts Phase Behavior of 2D Hybrid Halide Perovskites

机译:界面机电预测2D杂交卤化物PEROVSKITES的相行为

获取原文
获取原文并翻译 | 示例
           

摘要

Quasi-two-dimensional (2D) mixed-cation hybrid halide perovskites (A' (2)A(N-1)M(N)X(3N-r); A' = large organic molecule with cationic group, A = [Cs+, CH3NH3+, HC-(NH2)(2)], M = [Pb, Sn, Ge], X = [I-, Br-, Cl-]) have rapidly emerged as candidates to improve the structural stability and device lifetime of 3D perovskite semiconductor devices under operating conditions. The addition of the large A' cation to the traditional AMX(3) structure introduces several synthetic degrees of freedom and breaks M-X bonds, giving rise to peculiar critical phase behavior in the phase space of these complex materials. In this work, we propose a thermodynamic model parametrized by first-principles calculations to generate the phase diagram of 2D and quasi-2D perovskites (q-2DPKs) based on the mechanics and electrostatics of the interface between the A' cations and the metal halide octahedral network. Focusing on the most commonly studied methylammonium lead iodide system where A' is n-butylammonium (BA; CH3(CH2)(3)NH3+), we find that the apparent difficulty in synthesizing phase-pure samples with a stoichiometric index N > 5 can be attributed to the energetic competition between repulsion of opposing interfacial dipole layers and mechanical relaxation induced by interfacial stress. Our model shows quantitative agreement with experimental observations of the maximum phase-pure stoichiometric index (N-crit) and explains the nonmonotonic evolution of the lattice parameters with increasing stoichiometric index (N). This model is generalizable to the entire family of q-2DPKs and can guide the design of photovoltaic and optical materials that combine the structural stability of the q-2DPKs while retaining the charge carrier properties of their 3D counterparts.
机译:准二维(2D)混合阳离子杂交卤化物钙酸盐(a'(2)a(n-1)m(n)x(3n-r); a'=阳离子组的大型有机分子,a = [ CS +,CH3NH3 +,HC-(NH2)(2)],M = [PB,SN,GE],X = [I-,BR-,CL-])迅速出现为候选者以提高结构稳定性和设备寿命在操作条件下3D钙钛矿半导体器件。向传统的AMX(3)结构的大A'阳离子引入了几种合成自由度并破坏M-X键,在这些复合材料的相位空间中产生特殊的临界相行为。在这项工作中,我们提出了一种通过第一原理计算的热力学模型,基于A'阳离子和金属卤化物之间的界面的力学和静电来生成2D和QUASI-2D PEROVSKITES(Q-2dpks)的相图八面体网络。专注于最常见的甲基铅碘化物系统,其中A'是正丁基铵(Ba; CH 3(CH 2)(3)NH 3 +),我们发现合成具有化学计量指数N> 5的相纯样品的表观困难归因于通过界面应力诱导的反对界面偶​​极层和机械松弛之间的能量竞争。我们的模型显示了与最大相纯化学计量指数(N-CRIT)的实验观察的定量协议,并利用增加化学计量指数(N)来解释晶格参数的非单调演化。该型号可概括为整个Q-2DPKS系列,并且可以指导光伏和光学材料的设计,该光伏和光学材料结合Q-2dpks的结构稳定性,同时保留其3D对应物的电荷载体特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号