...
首页> 外文期刊>ACS nano >Band Nesting Bypass in WS2 Monolayers via Forster Resonance Energy Transfer
【24h】

Band Nesting Bypass in WS2 Monolayers via Forster Resonance Energy Transfer

机译:乐队嵌套在WS2单层的旁路通过Forster Arsonance能量转移

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have attracted intensive interest due to the direct-band-gap transition in the monolayer form, positioning them as potential next-generation materials for optoelectronic or photonic devices. However, the band-nested suppression of the recombination efficiency at higher excitation energies limits the ability to locally control and manipulate the photoluminescence of WS2 for multifunctional applications. In this work, we exploit an energy transfer method to modulate the fluorescence properties of TMDs under a larger excitation range spanning from UV to visible light. Self-assembled lanthanide (Ln)/TMD hybrids have been designed based on a low-cost and highly efficient solution-processed approach. The emission energy from Ln(3+) sources can be effectively transferred to the TMD monolayers under low power exposure (0.13 mW) at room temperature, activating the characteristic monolayer fluorescence in place of Ln(3+) emission signatures. The Ln/TMDs photonics can potentially tune the excitation of TMDs to provide variable yet controllable emissions. This provides a solution to the suppression of direct exciton recombination in monolayer TMDs at the band nesting resonant energy region. Our work on such Ln/TMD systems would overcome the limited excitation energy range in TMDs and extend their functionalities for optoelectronic or photonic applications.
机译:二维(2D)过渡金属二均磷(TMDS)由于单层形式的直接带间隙过渡而引起了密集的兴趣,使它们定位为光电或光子器件的潜在的下一代材料。然而,在更高的激发能下重组效率的带嵌套抑制限制了局部控制和操纵WS2的光致发光以进行多功能应用。在这项工作中,我们利用能量转移方法在从UV到可见光的较大激发范围下调节TMD的荧光特性。根据低成本和高效的解决方案处理方法设计了自组装的镧系元素(LN)/ TMD杂交机。来自LN(3+)源的发射能量可以在室温下在低功率暴露(0.13mW)下有效地转移到TMD单层,激活特征单层荧光,代替LN(3+)发射签名。 LN / TMDS光子学可能会调整TMD的激励,以提供可变但可控的排放。这提供了在带嵌套谐振能量区域的单层TMDS中抑制直接激子重组的解决方案。我们在此类LN / TMD系统上的工作将克服TMDS中的有限励磁能量范围,并扩展它们的光电或光子应用功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号