...
首页> 外文期刊>ACS nano >In Situ Transmission Electron Microscopy Measurements of Ge Nanowire Synthesis with Liquid Metal Nanodroplets in Water
【24h】

In Situ Transmission Electron Microscopy Measurements of Ge Nanowire Synthesis with Liquid Metal Nanodroplets in Water

机译:用水中液态金属纳米液体的Ge纳米线合成的原位透射电子显微镜测量

获取原文
获取原文并翻译 | 示例
           

摘要

The growth of Ge nanowires in water inside a liquid transmission electron microscope (TEM) holder has been demonstrated at room temperature. Each nanowire growth event was stimulated by the incident electron beam on otherwise unsupported liquid Ga or liquid In nanodroplets. A variety of conditions were explored, including liquid metal nanodroplet surface condition, liquid metal nanodroplet size and density, formal concentration of dissolved GeO2, and electron beam intensity. The cumulative observations from a series of videos recorded during growth events suggested the following points. First, the conditions necessary for initiating nanowire growth at uncontacted liquid metal nanodroplets in a liquid TEM cell indicate the process was governed by solvated electrons generated from secondary electrons scattered by the liquid metal nanodroplets. The attained current densities were comparable to those achieved in conventional electrochemical liquid-liquid-solid (ec-LLS) growths outside of a TEM. Second, the surface condition of the liquid metal nanodroplets was quite influential on whether nanowire growth occurred and surface diffusion of Ge adatoms contributed to the rate of crystallization. Third, the Ge nanowire growth rates were limited by the feed rate of Ge to the crystal growth front rather than the rate of crystallization at the liquid metal/solid Ge interface. Estimates of an electrochemical current for the reduction of dissolved GeO2 were nominally in line with currents used for Ge nanowire growth by ec-LLS outside of the TEM. Fourth, the Ge nanowire growths in the liquid TEM cell occurred far from thermodynamic equilibrium, with supersaturation values of 10(4) prior to nucleation. These collective points provide insight on how to further control and improve Ge nanowire morphology and crystallographic quality by the ec-LLS method.
机译:在室温下已经证明了液体透射电子显微镜(TEM)保持器内部的Ge纳米线的生长。通过在诸如不支持的液体Ga或纳米辊中的液体Ga或液体上的入射电子束刺激每个纳米线生长事件。探索了各种条件,包括液态金属纳米射线表面条件,液态金属纳米射线尺寸和密度,正式浓度的溶解Geo2,以及电子束强度。在增长活动期间记录的一系列视频的累积观察表明以下几点。首先,在液体TEM电池中未接受的液态金属纳米辊在随后的液态金属纳米玻璃中启动纳米线生长所需的条件表明该过程由由散射的液态金属纳米辊散射的二次电子产生的溶化电子控制。达到的电流密度与在TEM外的常规电化学液 - 液 - 固体(EC-LLS)生长中实现的密度相当。其次,液态金属纳米液体的表面状况对纳米线生长是否发生并且GE吸附剂的表面扩散有助于结晶速率的影响非常有影响。第三,Ge纳米线生长速率受Ge的进料速率限制为晶体金属/固体Ge接口的晶体生长前沿而不是结晶速率。用于减少溶解的Geo2的电化学电流的估计标称符合用于GE纳米线的电流通过TEM之外的EC-LL使用的电流。第四,液体TEM细胞中的Ge纳米线生长远离热力学平衡,在成核之前的超饱和值10(4)。这些集体点提供了有关如何通过EC-LLS方法进一步控制和改善GE纳米线形态和晶体质量的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号