...
首页> 外文期刊>ACS nano >Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets
【24h】

Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets

机译:通过封装在超薄3D p掺杂多孔碳纳米液中的无定形FEP纳米粒子来实现快速和耐用的锂储存

获取原文
获取原文并翻译 | 示例
           

摘要

Conversion-type transition-metal phosphide anode materials with high theoretical capacity usually suffer from low-rate capability and severe capacity decay, which are mainly caused by their inferior electronic conductivities and large volumetric variations together with the poor reversibility of discharge product (Li_(3)P), impeding their practical applications. Herein, guided by density functional theory calculations, these obstacles are simultaneously mitigated by confining amorphous FeP nanoparticles into ultrathin 3D interconnected P-doped porous carbon nanosheets (denoted as [email?protected]) via a facile approach, forming an intriguing 3D flake-CNs-like configuration. As an anode for lithium-ion batteries (LIBs), the resulting [email?protected] electrode not only reaches a high reversible capacity (837 mA h g~(–1) after 300 cycles at 0.2 A g~(–1)) and an exceptional rate capability (403 mA h g~(–1) at 16 A g~(–1)) but also exhibits extraordinary durability (2500 cycles, 563 mA h g~(–1) at 4 A g~(–1), 98% capacity retention). By combining DFT calculations, in situ transmission electron microscopy, and a suite of ex situ microscopic and spectroscopic techniques, we show that the superior performances of [email?protected] anode originate from its prominent structural and compositional merits, which render fast electron/ion-transport kinetics and abundant active sites (amorphous FeP nanoparticles and structural defects in P-doped CNs) for charge storage, promote the reversibility of conversion reactions, and buffer the volume variations while preventing pulverization/aggregation of FeP during cycling, thus enabling a high rate and highly durable lithium storage. Furthermore, a full cell composed of the prelithiated [email?protected] anode and commercial LiFePO_(4) cathode exhibits impressive rate performance while maintaining superior cycling stability. This work fundamentally and experimentally presents a facile and effective structural engineering strategy for markedly improving the performance of conversion-type anodes for advanced LIBs.
机译:具有高理论能力的转换型过渡金属磷化物阳极材料通常遭受低速率能力和严重的容量衰减,主要由其劣质电子电导率和大容量变化以及放电产品的不良性(Li_(3 )p),阻碍他们的实际应用。在此,通过密度函数理论计算引导,通过将无定形FEP纳米颗粒限制到超薄3D互连的P掺杂多孔碳纳米片中同时减轻这些障碍物(表示为[邮箱),通过容易的方法表示,形成有趣的3D片状CNS样配置。作为锂离子电池(LIBS)的阳极,所得到的[电子邮件吗?受保护的]电极不仅达到高可逆容量(837 mA Hg〜(-1),在0.2Ag〜(-1)时300次)和卓越的速率能力(403 mA Hg〜(-1),16A g〜(-1)),但也表现出非凡的耐久性(2500次循环,563 mA Hg〜(-1),在4 a g〜(-1), 98%的容量保留)。通过组合DFT计算,原位透射电子显微镜,以及套件的诸如原地显微镜和光谱技术,我们表明[电子邮件吗?受保护的]阳极的优异性能源自其突出的结构和组成优点,其中呈现快速电子/离子输送动力学和丰富的活性位点(无定形FEP纳米粒子和P掺杂CNS的结构缺陷),用于电荷储存,促进转化反应的可逆性,并缓冲体积变化,同时防止在FEP期间的粉碎/聚集循环,从而实现高速率和高度耐用的锂储存。此外,由预期的[电子邮件®保护]阳极和商业Lifepo_(4)阴极组成的完整小区在保持优越的循环稳定性的同时表现出令人印象深刻的速率性能。这项工作从根本上并实验地提出了一种适用于有效的结构工程策略,可显着提高高级LIBS的转换型阳极的性能。

著录项

  • 来源
    《ACS nano》 |2020年第8期|共17页
  • 作者单位

    Department of Materials Science and Engineering College of Materials Xiamen University;

    Beijing Advanced Innovation Center for Materials Genome Engineering State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing;

    Department of Nanoengineering University of California San Diego;

    Department of Materials Science and Engineering College of Materials Xiamen University;

    Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory;

    Department of Nanoengineering University of California San Diego;

    Department of Nanoengineering University of California San Diego;

    Advanced Light Source Division Lawrence Berkeley National Laboratory;

    Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory;

    Department of Nanoengineering University of California San Diego;

    Department of Materials Science and Engineering College of Materials Xiamen University;

    School of Materials Science and Engineering Georgia Institute of Technology;

    Department of Materials Science and Engineering College of Materials Xiamen University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    amorphous FeP; carbon nanosheets; lt; igt; in sitult; /igt; TEM; anode materials; lithium ion batteries;

    机译:无定形FEP;碳纳米片;<i>原位</ i>TEM;阳极材料;锂离子电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号