...
首页> 外文期刊>ACS nano >Toward Near-Perfect Diffractive Optical Elements via Nanoscale 3D Printing
【24h】

Toward Near-Perfect Diffractive Optical Elements via Nanoscale 3D Printing

机译:通过纳米级3D打印朝向近乎完美的衍射光学元件

获取原文
获取原文并翻译 | 示例
           

摘要

Diffractive optical elements (DOEs) are widely applied as compact solutions to generate desired optical patterns in the far field by wavefront shaping. They consist of microscopic structures of varying heights to control the phase of either reflected or transmitted light. However, traditional methods to achieve varying thicknesses of structures for DOEs are tedious, requiring multiple aligned lithographic steps each followed by an etching process. Additionally, the reliance on photomasks precludes rapid prototyping and customization in manufacturing complex and multifunctional surface profiles. To achieve this, we turn to nanoscale 3D printing based on two-photon polymerization lithography (TPL). However, TPL systems lack the precision to pattern diffractive components where subwavelength variations in height and position could lead to observable loss in diffraction efficiency. Here, we employed a lumped TPL parametric model and a workaround patterning strategy to achieve precise 3D printing of DOEs using optimized parameters for laser power, beam scan speed, hatching distance, and slicing distance. In our case study, millimeter scale near-perfect Dammann gratings were fabricated with measured diffraction efficiencies near theoretical limits, laser spot array nonuniformity as low as 1.4%, and power ratio of the zero-order spot as low as 0.4%. Leveraging on the advantages of additive manufacturing inherent to TPL, the 3D-printed optical devices can be applied for precise wavefront shaping, with great potential in all-optical machine learning, virtual reality, motion sensing, and medical imaging.
机译:衍射光学元件(确实)被广泛应用于紧凑的溶液,以通过波前塑形在远场中产生所需的光学图案。它们由不同高度的显微结构组成,以控制反射或透射光的相位。然而,传统的方法以实现不同厚度的结构,其确实是乏味的,需要多个对准的光刻步骤,每个标准步骤随后是蚀刻过程。另外,对光掩模的依赖性在制造复合物和多功能表面型材中释放出快速的原型设计和定制。为此,我们基于双光子聚合光刻(TPL)转向纳米级3D打印。然而,TPL系统缺乏精确的模式衍射部件,其中高度和位置的亚波长变化可能导致衍射效率的可观察损失。在这里,我们采用了一个集总TPL参数模型和解决方案图案化策略,以实现使用优化参数的精确3D打印,用于激光功率,光束扫描速度,阴影距离和切片距离。在我们的案例研究中,毫米刻度近乎完美的Dammann光栅被测得的衍射效率靠近理论限制,激光点阵列不均匀,低至1.4%,零级点的功率比为低至0.4%。利用固有TPL固有的添加剂制造的优点,3D印刷光学装置可以应用于精确的波前塑造,具有全光机学习,虚拟现实,运动传感和医学成像的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号