...
首页> 外文期刊>ACS nano >Sculpting Artificial Edges in Monolayer MoS2 for Controlled Formation of Surface-Enhanced Raman Hotspots
【24h】

Sculpting Artificial Edges in Monolayer MoS2 for Controlled Formation of Surface-Enhanced Raman Hotspots

机译:雕刻在单层MOS2中的人工边缘,用于对表面增强拉曼热点的控制形成

获取原文
获取原文并翻译 | 示例
           

摘要

Hotspot engineering has the potential to transform the field of surface-enhanced Raman spectroscopy (SERS) by enabling ultrasensitive and reproducible detection of analytes. However, the ability to controllably generate SERS hotspots, with desired location and geometry, over large-area substrates, has remained elusive. In this study, we sculpt artificial edges in monolayer molybdenum disulfide (MoS2) by low-power focused laser-cutting. We find that when gold nanoparticles (AuNPs) are deposited on MoS2 by drop-casting, the AuNPs tend to accumulate predominantly along the artificial edges. First-principles density functional theory (DFT) calculations indicate strong binding of AuNPs with the artificial edges due to dangling bonds that are ubiquitous on the unpassivated (laser-cut) edges. The dense accumulation of AuNPs along the artificial edges intensifies plasmonic effects in these regions, creating hotspots exclusively along the artificial edges. DFT further indicates that adsorption of AuNPs along the artificial edges prompts a transition from semiconducting to metallic behavior, which can further intensify the plasmonic effect along the artificial edges. These effects are observed exclusively for the sculpted (i.e., cut) edges and not observed for the MoS2 surface (away from the cut edges) or along the natural (passivated) edges of the MoS2 sheet. To demonstrate the practical utility of this concept, we use our substrate to detect Rhodamine B (RhB) with a large SERS enhancement (similar to 10(4)) at the hotspots for RhB concentrations as low as similar to 10(-10) M. The single-step laser-etching process reported here can be used to controllably generate arrays of SERS hotspots. As such, this concept offers several advantages over previously reported SERS substrates that rely on electrochemical deposition, e-beam lithography, nanoimprinting, or photolithography. Whereas we have focused our study on MoS2, this concept could, in principle, be extended to a variety of 2D material platforms.
机译:热点工程有可能通过实现对分析物的超敏和可重复的检测来改变表面增强拉曼光谱(SERS)的领域。然而,可控制地生成SERS热点的能力,具有在大区域基板上的所需位置和几何形状,仍然难以捉摸。在这项研究中,通过低功率聚焦激光切割,我们将人工边缘雕刻在单层钼二硫化物(MOS2)中。我们发现,当通过滴铸件沉积金纳米颗粒(AUNP)沉积在MOS2上时,剖腹产倾向于沿着人工边缘堆积。第一原理密度函数理论(DFT)计算表明AUNP与人工边缘的强大结合由于悬垂的粘合粘合,这些悬垂的粘合剂在未被透射的(激光切割)边缘上普遍存在。沿着人工边缘的肛门孔的致密累积增强了这些区域的等离子效应,沿着人工边缘专门创建热点。 DFT进一步表明,沿着人造边缘的AUNP吸附促使从半导体转变为金属行为,这可以进一步加强沿着人造边缘的等离子体效应。这些效果仅针对雕刻的(即切割的)边缘观察并且未观察到MOS2表面(远离切割边缘)或沿着MOS2片材的自然(钝化)边缘观察。为了展示该概念的实用实用性,我们使用我们的基材检测罗丹明B(RHB),在RHB浓度的热点处具有大的大柱增强(类似于10(4)),与10(-10)米相似。这里报道的单步激光蚀刻过程可用于可控地生成SERS热点阵列。因此,该概念在先前报告的SERS基板上提供了几个优点,依赖于电化学沉积,电子光束光刻,纳米修印机或光刻。然而,我们专注于我们对MOS2的研究,这一概念原则上可以扩展到各种2D材料平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号