...
首页> 外文期刊>ACS nano >Mechanism Investigation of High-Performance Li-Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals
【24h】

Mechanism Investigation of High-Performance Li-Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals

机译:钨二硫化物纳米珠铁能量高性能Li-多硫化物电池的机制研究

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the reaction kinetics and mechanism of Li-polysulfide batteries is critical in designing advanced host materials for improved performance. However, up to now, the reaction mechanism within the Li-polysulfide batteries is still unclear. Herein, we study the reaction mechanism of a high-performance Li-polysulfide battery by in situ X-ray diffraction (XRD) and density functional theory (DFT) calculations based on a multifunctional host material composed of WS2 nanopetals embedded in rGO-CNT (WS2-rGO-CNT) aerogel. The WS2 nanopetal serves as a "catalytic center" to chemically bond the polysulfides and accelerate the polysulfide redox reactions, and the 3D porous rGO-CNT scaffold provides fast and efficient e(-)/Li+ transportation. Thus, the resulting WS2-rGO-CNT aerogel accommodating the polysulfide catholyte enables a stable cycling performance, excellent rate capability (614 mAh g(-1) at 2 C), and a high areal capacity (6.6 mAh cm(-2) at 0.5 C). In situ XRD results reveal that the Li2S starts to form at an early stage of discharge (at a depth of 25% of the lower voltage plateau) during the discharge process, and beta-S8 nucleation begins before the upper voltage plateau during the recharge process, which are different from the conventional Li-S battery. Moreover, the WS2 itself could be lithiated/delithiated during the cycling, making the lithiated WS2 (LixWS2, 0 = x = 0.3) a real host material for Li-polysulfide batteries. DFT calculations suggest that LixWS2 (0 = x = 0.3) exhibits moderate binding/anchoring interactions toward polysulfides with adsorption energies of 0.51-1.4 eV. Our work reveals the reaction mechanism of the Li-polysulfide batteries and indicates that the lithiated host plays an important role in trapping the polysulfides.
机译:了解Li-多硫化物电池的反应动力学和机理在设计先进的主体材料方面至关重要。然而,到目前为止,Li-多硫化物电池内的反应机理仍然不清楚。在此,我们通过原位X射线衍射(XRD)和密度泛函理论(DFT)计算基于由RGO-CNT嵌入的WS2纳米百分之部组成的多功能宿主材料来研究高性能Li-多硫化物电池的反应机理。 WS2-RGO-CNT)Airgel。 WS2纳米甲酸作为化学键合的“催化中心”,并加速多硫化物氧化还原反应,3D多孔RGO-CNT支架提供快速和高效的E( - )/ Li +运输。因此,得到多硫化物阴极电解液的所得WS2-RGO-CNT气凝胶使得能够稳定的循环性能,优异的速率能力(614mAhg(-1)在2℃)和高面积容量(6.6mAhcm(-2) 0.5 c)。原位XRD结果表明,Li2s在放电过程中开始在放电早期阶段(在下电压高原的深度为25%),并且在充电过程中的上电压高原之前开始β-S8成核开始,这与传统的LI-S电池不同。此外,WS2本身可以在循环期间锂化/脱发,使得锂化的WS2(LixWs2,0 = x& = 0.3)用于Li-多硫化物电池的实际主体材料。 DFT计算表明LixWS2(0 = x& = 0.3)表现出对多硫化物的适度结合/锚定相互作用,其吸附能量为0.51-1.4eV。我们的作品揭示了Li-多硫化物电池的反应机理,表明锂酸型宿主在捕获多硫化物方面发挥着重要作用。

著录项

  • 来源
    《ACS nano》 |2018年第9期|共9页
  • 作者单位

    Singapore Univ Technol &

    Design Pillar Engn Prod Dev 8 Somapah Rd Singapore 487372 Singapore;

    Singapore Univ Technol &

    Design Pillar Engn Prod Dev 8 Somapah Rd Singapore 487372 Singapore;

    Singapore Univ Technol &

    Design Pillar Engn Prod Dev 8 Somapah Rd Singapore 487372 Singapore;

    Singapore Univ Technol &

    Design Pillar Engn Prod Dev 8 Somapah Rd Singapore 487372 Singapore;

    Singapore Univ Technol &

    Design Pillar Engn Prod Dev 8 Somapah Rd Singapore 487372 Singapore;

    Agcy Sci Technol &

    Res Inst Mat Res &

    Engn 2 Fusionopolis Way Singapore 138634 Singapore;

    Singapore Univ Technol &

    Design Pillar Engn Prod Dev 8 Somapah Rd Singapore 487372 Singapore;

    Singapore Univ Technol &

    Design Pillar Engn Prod Dev 8 Somapah Rd Singapore 487372 Singapore;

    Singapore Univ Technol &

    Design Pillar Engn Prod Dev 8 Somapah Rd Singapore 487372 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    tungsten disulfide nanopetals; chemical bonding; in situ XRD; lithium sulfur batteries; reaction mechanism;

    机译:钨二硫化物纳米nan;化学键合;原位XRD;锂硫电池;反应机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号