...
首页> 外文期刊>ACS nano >Probing the Growth Kinetics for the Formation of Uniform 1D Block Copolymer Nanoparticles by Living Crystallization-Driven Self-Assembly
【24h】

Probing the Growth Kinetics for the Formation of Uniform 1D Block Copolymer Nanoparticles by Living Crystallization-Driven Self-Assembly

机译:用活化驱动的自组装形成均匀1d嵌段共聚物纳米粒子的形成生长动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Living crystallization-driven self-assembly (CDSA) is a seeded growth method for crystallizable block copolymers (BCPs) and related amphiphiles in solution and has recently emerged as a highly promising and versatile route to uniform core-shell nanoparticles (micelles) with control of dimensions and architecture. However, the factors that influence the rate of nanoparticle growth have not been systematically studied. Using transmission electron microscopy, small and wide-angle X-ray scattering, and super-resolution fluorescence microscopy techniques, we have investigated the kinetics of the seeded growth of poly(ferrocenyldimethylsilane)-b-(polydimethylsiloxane) (PFS-b-PDMS), as a model living CDSA system for those employing, for example, crystallizable emissive and biocompatible polymers. By altering various self-assembly parameters including concentration, temperature, solvent, and BCP composition our results have established that the time taken to prepare fiber-like micelles via the living CDSA method can be reduced by decreasing temperature, by employing solvents that are poorer for the crystallizable PFS core-forming block, and by increasing the length of the PFS core-forming block. These results are of general importance for the future optimization of a wide variety of living CDSA systems. Our studies also demonstrate that the growth kinetics for living CDSA do not exhibit the first-order dependence of growth rate on unimer concentration anticipated by analogy with living covalent polymerizations of molecular monomers. This difference may be caused by the combined influence of chain conformational effects of the BCP on addition to the seed termini and chain length dispersity.
机译:活性结晶驱动的自组装(CDSA)是用于溶液中可结晶的嵌段共聚物(BCP)和相关两亲物的种子生长方法,最近被作为具有控制的均匀核 - 壳纳米颗粒(胶束)的高度承诺和多功能的途径尺寸和架构。然而,影响纳米粒子生长速率的因素尚未得到系统研究。使用透射电子显微镜,小而广角X射线散射和超级分辨率荧光显微镜技术,我们研究了聚(Ferrocenyldimethylanelane)-b-(Pold二甲基硅氧烷)的种子生长的动力学(PFS-B-PDMS)作为一种用于那些使用的模型活性CDSA系统,例如可结晶的发光和生物相容性聚合物。通过改变包括浓度,温度,溶剂和BCP组合物的各种自组装参数,我们的结果已经确定,通过使用较差的溶剂可以降低通过活性CDSA方法制备纤维样胶束所需的时间。可结晶的PFS芯形成块,并通过增加PFS核心形成块的长度。这些结果对于未来优化各种生活CDSA系统的优化非常重要。我们的研究还表明,生活CDSA的生长动力学不表现出生长速率的一阶依赖性,这些浓度对分子单体的生物共价聚合预期的uTimer浓度。这种差异可能是由BCP的链构象效应的综合影响引起的,除了种子末端和链长分散性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号