...
首页> 外文期刊>ACS nano >The Impact of Core/Shell Sizes on the Optical Gain Characteristics of CdSe/CdS Quantum Dots
【24h】

The Impact of Core/Shell Sizes on the Optical Gain Characteristics of CdSe/CdS Quantum Dots

机译:核心/壳体尺寸对CDSE / CDS量子点的光学增益特性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Colloidal quantum dots (QDs) are highly attractive as the active material for optical amplifiers and lasers. Here, we address the relation between the structure of CdSe/CdS core/shell QDs, the material gain they can deliver, and the threshold needed to attain net stimulated emission by optical pumping. On the basis of an initial gain model, we predict that reducing the thickness of the CdS shell grown around a given CdSe core will increase the maximal material gain, while increasing the shell thickness will lower the gain threshold. We assess this trade-off by means of transient absorption spectroscopy. Our results confirm that thin-shell QDs exhibit the highest material gain. In quantitative agreement with the model, core and shell sizes hugely impact on the material gain, which ranges from 2800 cm(-1) for large core/thin shell QDs to less than 250 cm(-1) for small core/thick shell QDs. On the other hand, the significant threshold reduction expected for thick-shell QDs is absent. We relate this discrepancy between model and experiment to a transition from attractive to repulsive exciton-exciton interactions with increasing shell thickness. The spectral blue-shift that comes with exciton-exciton repulsion leads to competition between stimulated emission and higher energy absorbing transitions, which raises the gain threshold. As a result, small-core/thick-shell QDs need up to 3.7 excitations per QD to reach transparency, whereas large-core/thin shell QDs only need 1.0, a number often seen as a hard limit for biexciton-mediated optical gain. This makes large-core/thin-shell. QDs that feature attractive exciton-exciton interactions the overall champion core/shell configuration in view of highest material gain, lowest threshold exciton occupation, and longest gain lifetime.
机译:胶体量子点(QDS)作为光放大器和激光器的活性材料是高度吸引力的。在这里,我们解决了CDSE / CDS核心/壳QDS结构之间的关系,它们可以提供的材料增益以及通过光学泵送获得净激发排放所需的阈值。在初始增益模型的基础上,我们预测降低给定CDSE芯围绕给定CDSE芯而生长的CDS壳的厚度将增加最大材料增益,同时增加壳体厚度将降低增益阈值。我们通过瞬态吸收光谱评估此权衡。我们的结果证实,薄壳QDS表现出最高的材料增益。在与模型的定量协议中,核心和壳体尺寸非常影响材料增益,其范围为2800厘米(-1),对于小芯/厚壳QDS的大芯/薄壳QD为小于250厘米(-1) 。另一方面,不存在预期对厚壳QD的显着阈值减少。我们将模型与实验之间的这种差异与从吸引力的转变与增加的壳厚度的抗震性兴奋剂相互作用相关。随着激子 - 激子排斥带来的光谱蓝换点导致刺激发射和更高的能量吸收转变之间的竞争,这提高了增益阈值。因此,小核/厚壳QDS每QD需要高达3.7激发以达到透明度,而大核/薄壳QD只需要1.0,则一个数字通常被视为Biexciton介导的光学增益的硬限制。这使得大核/薄壳。 QDS,具有吸引力的激子激励互动整体冠军核心/壳牌配置,鉴于最高的材料增益,最低门槛激子占用和最长的增益寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号