...
首页> 外文期刊>ACS nano >Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs
【24h】

Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs

机译:胶原蛋白原纤维:自然的高度可调非线性弹簧

获取原文
获取原文并翻译 | 示例
           

摘要

Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.
机译:众所周知,组织水合可以影响组织力学,并且可以通过渗透压调谐。胶原蛋白原纤维是大自然的纳米级结构块,以实现各种生物组织和许多物种的生物力学功能。在胶原蛋白原纤维弹性中,长期以来一直认为胃癌共价交联长期以来,但主要来自生理,菌株。通过在原子力显微镜实验中调整渗透压在不同水合水平下对不同水合水平进行蛋白质纤维的纳米腺度实验,我们展示了在低纤维菌株下在低纤维菌株处定义胶原纤维拉伸弹性的功率。纳米机械拉伸试验揭示渗透压将胶原纤维刚度增加至24倍的横向(纳米狭窄),与可逆时的生理盐水相比,纵向方向(张力)高达6倍。通过水合和因此胶原封装密度调整弱分子力的密度和强度归因于弱分子间力的密度和强度。这种可逆机制可以通过细胞以可逆方式改变其机械微环境。该机制也可以转化为用于在空间解决的时尚中定制支架力学的组织工程方法,并且可能有助于解释疾病和炎症的发育过程中的局部机械变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号