...
首页> 外文期刊>ACS nano >Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning
【24h】

Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning

机译:Planar Featiodic阵列作为光学近场图案的Metasurface

获取原文
获取原文并翻译 | 示例
           

摘要

Plasmonic metasurfaces have spawned the field of flat optics using nanostructured planar metallic or dielectric surfaces that can replace bulky optical elements and enhance the capabilities of traditional far-field optics. Furthermore, the potential of flat optics can go far beyond far-field modulation and can be exploited for functionality in the near-field itself. Here, we design metasurfaces based on aperiodic arrays of plasmonic Au nanostructures for tailoring the optical near-field in the visible and near infrared spectral range. The basic element of the arrays is a rhomboid that is modulated in size, orientation, and position to achieve the desired functionality of the micron size metasurface structure. Using two-photon-photoluminescence as a tool to probe the near-field profiles in the plane of the metasurfaces, we demonstrate the molding of light into different near-field intensity patterns and active pattern control via the far-field illumination. Finite element method simulations reveal that the near-field modulation occurs via a combination of the plasmonic resonances of the rhomboids and field enhancement in the nanoscale gaps in between the elements. This approach enables optical elements that can switch the near-field distribution across the metasurface via wavelength and polarization of the incident far-field light and provides pathways for light matter interaction in integrated devices.
机译:等离子体元件使用纳米结构平面金属或介电表面产生了平面光学元件,可以替代庞大的光学元件并增强传统的远场光学的能力。此外,平面光学器件的潜力可以远远超出远场调制,并且可以在近场本身中进行功能。这里,我们基于基于等离子体Au纳米结构的非周期性阵列来设计Metasurfaces,用于剪裁可见光和近红外光谱范围内的光学近场。阵列的基本元素是菱形,其被调制为尺寸,方向和位置,以实现微米尺寸元表面结构的所需功能。使用双光子 - 光致发光作为探测元核平面中的近场型材的工具,我们通过远场照明证明了光的模塑成为不同近场强度模式和主动图案控制。有限元方法模拟表明,近场调制通过菱形间隙中菱形间隙中的菱形间隙的等级谐振的组合而发生。该方法使得能够通过入射的远场光的波长和极化来切换跨越质量表面的近场分布的光学元件,并提供集成设备中的光质相互作用的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号