...
首页> 外文期刊>ACS nano >How Defects Control the Out-of-Equilibrium Dissipative Evolution of a Supramolecular Tubule
【24h】

How Defects Control the Out-of-Equilibrium Dissipative Evolution of a Supramolecular Tubule

机译:缺陷如何控制超分子小管的平衡耗散演化

获取原文
获取原文并翻译 | 示例
           

摘要

Supramolecular architectures that work out-of-equilibrium or that can change in specific ways when absorbing external energy are ubiquitous in nature. Gaining the ability to create via self assembly artificial materials possessing such fascinating behaviors would have a major impact in many fields. However, the rational design of similar dynamic structures requires to understand and, even more challenging, to learn how to master the molecular mechanisms governing how the assembled systems evolve far from the equilibrium. Typically, this represents a daunting challenge due to the limited molecular insight that can be obtained by the experiments or by classical modeling approaches. Here we combine coarse-grained molecular models and advanced simulation approaches to study at submolecular (<5 angstrom) resolution a supramolecular tubule, which breaks and disassembles upon absorption of light energy triggering isomerization of its azobenzene-containing monomers. Our approach allows us to investigate the molecular mechanism of monomer transition in the assembly and to elucidate the kinetic process for the accumulation of the transitions in the system. Despite the stochastic nature of the excitation process, we demonstrate how these tubules preferentially dissipate the absorbed energy locally via the amplification of defects in their supramolecular structure. We find that this constitutes the best kinetic pathway for accumulating monomer transitions in the system, which determines the dynamic evolution out-of-equilibrium and the brittle behavior of the assembly under perturbed conditions. Thanks to the flexibility of our models, we finally come out with a general principle, where defects explain and control the brittle/soft behavior of such light-responsive assemblies.
机译:超分子架构,在吸收外部能量时,可以以特定方式改变均衡的架构是普遍存在的。通过拥有这种迷人行为的自我组装人造材料的创造能力将在许多领域产生重大影响。然而,类似动态结构的理性设计需要了解和更具挑战性,学习如何掌握如何掌握组装系统如何发展的分子机制远离均衡。通常,这代表了由于实验或通过经典建模方法可以获得的有限的分子识别而导致的令人生畏的挑战。在这里,我们将粗粒化的分子模型和高级模拟方法结合在沉阳(<5埃)分辨率下进行的超分子小管,其在吸收含偶氮苯的单体的光能触发异构化时破裂和拆卸。我们的方法使我们能够研究组装中单体过渡的分子机制,并阐明体系中过渡的累积动力学过程。尽管激励过程的随机性质,但我们展示了这些管子如何通过其超分子结构中的缺陷局部局部优先消散吸收的能量。我们发现这构成了用于积累系统中的单体过渡的最佳动力途径,这决定了在扰动条件下的动态演化和组件的脆性行为。由于我们模型的灵活性,我们终于用一般的原则出来,其中缺陷解释并控制了这种轻响应组件的脆性/软行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号