...
首页> 外文期刊>ACS nano >Asymmetric Electrokinetic Proton Transport through 2D Nanofluidic Heterojunctions
【24h】

Asymmetric Electrokinetic Proton Transport through 2D Nanofluidic Heterojunctions

机译:通过2D纳米流体杂交输送的不对称电动质子输送

获取原文
获取原文并翻译 | 示例
           

摘要

Nanofluidic ion transport in nacre-like 2D layered materials attracts broad research interest due to subnanometer confined space and versatile surface chemistry for precisely ionic sieving and ultrafast water permeation. Currently, most of the 2D-material-based nanofluidic systems are homogeneous, and the investigations of proton conduction therein are restricted to symmetric transport behaviors. It remains a great challenge to endow the 2D nanofluidic systems with asymmetric proton transport characteristics and adaptive responsibilities. Herein, we report the asymmetric proton transport phenomena through a 2D nanofluidic heterojunction membrane under three different types of electrokinetic driving force, that is, the external electric field, the transmembrane concentration gradient, and the hydraulic pressure difference. The heterogeneous 2D nanofluidic membrane comprises of sequentially stacked negatively and positively charged graphene oxide (n-GO and p-GO) multilayers. We find that the preferential direction for proton transport is opposite under the three types of electrokinetic driving force. The preferential direction for electric-field driven proton transport is from the n-GO multilayers to the p-GO multilayers, showing rectified behaviors. Intriguingly, when the transmembrane concentration difference and the hydraulic flow are used as the driving force, a preferred diffusive and streaming proton current is found in the reverse direction, from the p-GO to the n-GO multilayers. The asymmetric proton transport phenomena are explained in terms of asymmetric proton concentration polarization and difference in proton selectivity. The membrane-scale heterogeneous 2D nanofluidic devices with electrokinetically controlled asymmetric proton flow provide a facile and general strategy for potential applications in biomimetic energy conversion and chemical sensing.
机译:纳米型2D层状材料中的纳米流体离子输送吸引了由于亚风速器限制空间和多功能表面化学的广泛研究兴趣,用于精确离子筛分和超快水渗透。目前,大多数基于2D材料的纳米流体系统是均匀的,并且其中质子传导的研究仅限于对称传输行为。赋予2D纳米流体系统具有不对称质子传输特性和适应性职责仍然是一个巨大的挑战。在此,我们通过在三种不同类型的电动驱动力下通过2D纳米流体异质结膜报告不对称质子传输现象,即外部电场,跨膜浓度梯度和液压差。非均相的2D纳米流体膜包括依次堆叠负极且带正电的石墨烯(N-GO和P-GO)多层。我们发现质子传输的优先方向在三种类型的电动驱动力下方相反。电场驱动质子传输的优先方向是从N-GO多层到P-GO多层,显示整流行为。有趣的是,当跨膜浓度差和液压流用作驱动力时,从P-GO到N-GO多层沿相反方向发现优选的扩散和流媒体电流。在不对称的质子浓度偏振和质子选择性差异方面解释了不对称质子传输现象。具有电动控制的不对称质子流程的膜级的异质2D纳米流体装置提供了一种适用于仿生能量转换和化学感测的潜在应用的容易和一般的策略。

著录项

  • 来源
    《ACS nano》 |2019年第4期|共8页
  • 作者单位

    Chinese Acad Sci Tech Inst Phys &

    Chem CAS Key Lab Bioinspired Mat &

    Interfacial Sci Beijing 100190 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem CAS Key Lab Bioinspired Mat &

    Interfacial Sci Beijing 100190 Peoples R China;

    Beijing Univ Chem Technol Coll Sci Beijing 100029 Peoples R China;

    Chinese Acad Sci Inst Chem Ctr Physiochem Anal &

    Measurement Beijing 100190 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem CAS Key Lab Bioinspired Mat &

    Interfacial Sci Beijing 100190 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem CAS Key Lab Bioinspired Mat &

    Interfacial Sci Beijing 100190 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem CAS Key Lab Bioinspired Mat &

    Interfacial Sci Beijing 100190 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem CAS Key Lab Bioinspired Mat &

    Interfacial Sci Beijing 100190 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem CAS Key Lab Bioinspired Mat &

    Interfacial Sci Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    proton transport; nanofluidics; 2D layered materials; ionic rectification; energy conversion;

    机译:质子运输;纳米流体;2D分层材料;离子整流;能量转换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号