首页> 外文期刊>ACS nano >Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces
【24h】

Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces

机译:大气介导的合理设计的微/纳米结构表面的超水性

获取原文
获取原文并翻译 | 示例
           

摘要

Superhydrophobicity has received significant attention over the past three decades owing to its significant potential in self-cleaning, anti-icing and drag reduction surfaces, energy-harvesting devices, antibacterial coatings, and enhanced heat transfer applications. Superhydrophobicity can be obtained via the roughening of an intrinsically hydrophobic surface, the creation of a re-entrant geometry, or by the roughening of a hydrophilic surface followed by a conformal coating of a hydrophobic material. Intrinsically hydrophobic surfaces have poor thermophysical properties, such as thermal conductivity, and thus are not suitable for heat transfer applications. Re-entrant geometries, although versatile in applications where droplets are deposited, break down during spatially random nucleation and flood the surface. Chemical functionalization of rough metallic substrates, although promising, is not utilized because of the poor durability of conformal hydrophobic coatings. Here we develop a radically different approach to achieve stable superhydrophobicity. By utilizing laser processing and thermal oxidation of copper (Cu) to create a high surface energy hierarchical copper oxide (CuO), followed by repeatable and passive atmospheric adsorption of hydrophobic volatile organic compounds (VOCs), we show that stable superhydrophobicity with apparent advancing contact angles approximate to 160 degrees and contact angle hysteresis as approximate to 20 degrees low as can be achieved. We exploit the structure length scale and structure geometry-dependent VOC adsorption dynamics to rationally design CuO nanowires with enhanced superhydrophobicity. To gain an understanding of the VOC adsorption physics, we utilized X-ray photoelectron and ion mass spectroscopy to identify the chemical species deposited on our surfaces in two distinct locations: Urbana, IL, United States and Beijing, China. To test the stability of the atmosphere-mediated superhydrophobic surfaces during heterogen
机译:由于其在自清洁,防冰和阻力减少表面,能量收集装置,抗菌涂层和增强的传热应用中,超疏水性在过去三十年中得到了重大关注。通过本质上疏水表面的粗糙度可以获得超疏水性,产生再参与者的几何形状,或通过亲水表面的粗糙化,然后进行亲属的疏水材料。本质上疏水性表面具有差的热物理性质,例如导热率,因此不适用于传热应用。重新参加物质,虽然沉积液滴的应用中的多功能,但在空间随机成核期间分解并泛洪表面。由于保形疏水涂层的耐久性差,不利用粗金属衬底的化学官能化。在这里,我们开发了一种完全不同的方法来实现稳定的超疏水性。通过利用铜(Cu)的激光加工和热氧化来产生高表面能等级氧化铜氧化物(CUO),然后是可重复且被动大气吸附的疏水性挥发性有机化合物(VOC),我们表明稳定的超疏水性与表观推进接触直角近似于160度和接触角滞后,与可以实现的20度低近似。我们利用结构长度和结构几何依赖性VOC吸附动力学,以具有增强的超疏水性的​​合理设计CUO纳米线。为了了解VOC吸附物理学,我们利用X射线光电子和离子质谱,以识别在两个不同地点的表面上沉积的化学物质:中国厄巴纳,IL,美国和北京。测试气体后气氛介导的超疏水表面的稳定性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号