...
首页> 外文期刊>ACS nano >Plasmon Excitations in Mixed Metallic Nanoarrays
【24h】

Plasmon Excitations in Mixed Metallic Nanoarrays

机译:混合金属纳米载体中的等离子体激发

获取原文
获取原文并翻译 | 示例
           

摘要

Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement of sp-valence electrons and the energy position of d-electrons in the different atomic species and the hybridization between d and sp electrons. It is possible to tune the position of the plasmon resonance, split it into several peaks, and eventually achieve broadband absorption of radiation. Arrays of mixed noble and transition-metal chains may have strongly attenuated plasmonic behavior. The collective nature of the excitations is ascertained using their Kohn Sham transition contributions. To manipulate the plasmonic response and achieve the desired properties for broad applications, it is vital to understand the origins of these phenomena in atomic chains and their arrays.
机译:来自宏观材料的表面等离子体的特征在分子系统中出现,但分解分子系统中单颗粒激发的集体激发仍然难以捉摸。单粒子电子孔和集体电子激发之间的丰富相互作用产生与原子阵列内的化学物理方面相关的现象。我们使用时间依赖性密度函数理论及其Kohn Sham转型贡献研究了贵贵(Au,Ag和Cu)和过渡金属(Pd,Pt)均匀链的原子阵列的等离子体性能。对电磁辐射的响应与SP型电子电子的几何依赖性限制和D型电子在不同原子物质中的能量位置和D和SP电子之间的杂交。可以调整等离子体共振的位置,将其分成几个峰,最终实现辐射的宽带吸收。混合贵族和过渡金属链阵列可能具有强烈衰减的等离子体行为。使用kohn sham转型贡献来确定激动的集体性质。为了操纵等离子体响应并达到广泛应用的所需性质,了解原子链和阵列中这些现象的起源至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号