...
首页> 外文期刊>Journal of Low Power Electronics >Performance Tradeoffs in the Design of Low-Power SRAM Arrays for Implantable Devices
【24h】

Performance Tradeoffs in the Design of Low-Power SRAM Arrays for Implantable Devices

机译:用于植入设备的低功耗SRAM阵列设计中的性能权衡

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the performance tradeoffs of three different SRAM arrays of size 1 K × 16 with power reductions techniques are investigated for implantable devices. The three SRAM arrays investigated consists of 6, 7 and 8 transistors in each 1-bit memory cell. The low power techniquesapplied to these SRAM arrays are power gating technique, data retention voltage and use of high threshold transistors. First, these leakage power reduction techniques are applied independently to the SRAM arrays and then applied simultaneously to determine the tradeoffs in the power-performance.The SRAM arrays are investigated using 16 nm and 22 nm bulk CMOS transistor models and using 10 nm, 14 nm, 16 nm and 20 nm FinFET transistor models. Leakage power, read delay, write delay and power delay products are measured and analyzed. For SRAM arrays using bulk CMOS transistors, it wasdetermined that the use of high threshold transistors and power gating technique simultaneously could only save less than 4% of leakage power as compared to using the power gating technique only in 22 nm technology node and no savings in 16 nm technology node. Use of power gating techniqueand data retention voltage in FinFET technology nodes saved more than 95% of leakage. Use of data retention voltage was effective in reducing the leakage power for all the arrays investigated in this research. The 6T SRAM cell based memory array using high threshold transistors exhibited thelowest power delay product without power gating. 20 nm FinFET nodes exhibited the lowest power delay product among the three SRAM arrays analyzed.
机译:本文研究了具有功率减少技术的三种不同SRAM阵列的性能权衡,用于可植入装置。研究的三个SRAM阵列由每个1位存储器单元中的6,7和8个晶体管组成。这些SRAM阵列的低功率技术是功率门控技术,数据保持电压和高阈值晶体管的使用。首先,这些泄漏功率降低技术独立地应用于SRAM阵列,然后同时应用以确定功率性能中的权衡。使用16nm和22 nm批量CMOS晶体管模型来研究SRAM阵列,并使用10nm,14nm。 ,16nm和20 nm finfet晶体管型号。测量并分析漏电功率,读取延迟,写延迟和功率延迟产品。对于使用批量CMOS晶体管的SRAM阵列,它是使用高阈值晶体管和功率门控技术的使用同时只能节省小于4%的泄漏功率,并且在仅使用22 nm技术节点中使用功率门控技术并没有节省16 NM技术节点。 FinFET技术节点中的功率门控技术数据保留电压可节省超过95%的泄漏。使用数据保持电压有效地降低了在本研究中调查的所有阵列的泄漏功率。使用高阈值晶体管的6T SRAM单元基的存储器阵列表现出没有功率门控的Thelowest功率延迟产品。在分析的三个SRAM阵列中,20 nm FinFET节点在三个SRAM阵列中表现出最低功率延迟产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号