...
首页> 外文期刊>Journal of hydrometeorology >Differences in Response of Terrestrial Water Storage Components to Precipitation over 168 Global River Basins
【24h】

Differences in Response of Terrestrial Water Storage Components to Precipitation over 168 Global River Basins

机译:168多个全球河流盆地降水抗响应响应的差异

获取原文
获取原文并翻译 | 示例
           

摘要

A time lag exists between precipitation P falling and being converted into terrestrial water. The responses of terrestrial water storage (TWS) and its individual components to P over the global scale, which are vital for understanding the interactions and mechanisms between climatic variables and hydrological components, are not well constrained. In this study, relying on land surface models, we isolate five component storage anomalies from TWS anomalies (TWSA) derived from the Gravity Recovery and Climate Experiment mission (GRACE): canopy water storage anomalies (CWSA), surface water storage anomalies (SWSA), snow water equivalent anomalies (SWEA), soil moisture storage anomalies (SMSA), and groundwater storage anomalies (GWSA). The responses of TWSA and of the individual components of TWSA to P are then evaluated over 168 global basins. The lag between TWSA and P is quantified by calculating the correlation coefficients between GRACE-based TWSA and P for different time lags, then identifying the lag (measured in months) corresponding to the maximum correlation coefficient. A multivariate regression model is used to explore the relationship between climatic and basin characteristics and the lag between TWSA and P. Results show that the spatial distribution of TWSA trend presents a similar global pattern to that of P for the period January 2004-December 2013. TWSA is positively related to P over basins but with lags of variable duration. The lags are shorter in the low- and midlatitude basins (1-2 months) than those in the high-latitude basins (6-9 months). The spatial patterns of the maximum correlations and the corresponding lags between individual components of the TWSA and P are consistent with those of the GRACE-based analysis, except for SWEA (3-8 months) and CWSA (0 months). The lags between GWSA, SMSA, and SWSA to P can be arranged as GWSA > SMSA >= SWSA. Regression analysis results show that the lags between TWSA and P are related to the mean temperature,
机译:在降水P落下和转化为地面水之间存在时间滞后。陆地储水(TWS)及其各个组分对全球规模的响应,这对理解气候变量和水文组分之间的相互作用和机制至关重要,并不受到很好的限制。在这项研究中,依靠陆地表面模型,我们将来自TWS异常(TWSA)的五个成分储存异常(TWSA)分离出来的TWS异常(TWSA)(Grace):树冠储水异常(CWSA),地表水储存异常(SWSA) ,雪水等效异常(SWEA),土壤水分储存异常(SMSA)和地下水储存异常(GWSA)。然后,在168个全球盆地评估TWSA和TWSA各个组分的反应。 TWSA和P之间的滞后通过计算不同时间滞后的基于栅格的TWSA和P之间的相关系数来量化,然后识别与最大相关系数相对应的滞后(在数月中测量)。多元回归模型用于探讨气候和盆地特征与TWSA和P之间的滞后关系结果表明,TWSA趋势的空间分布在2004年1月至2013年1月期间对P的空间分布提出了类似的全球模式。 TWSA与盆地呈正相关,但具有可变持续时间的滞后。低纬度盆地(1-2个月)滞后比高纬度盆地(6-9个月)更短。除了SWEA(3-8个月)和CWSA(0个月)之外,TWSA和P的各个组分之间的空间模式与TWSA和P的各个组分之间的相应滞后是一致的,除了SWEA(3-8个月)和CWSA(0个月)。 GWSA,SMSA和SWSA之间的滞后可以被安排为GWSA> SMSA> = SWSA。回归分析结果表明,TWSA和P之间的滞后与平均温度有关,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号