...
首页> 外文期刊>Journal of Adhesion Science and Technology: The International Journal of Theoredtical and Basic Aspects of Adhesion Science and Its Applications in All Areas of Technology >Influence of surface characteristics on the penetration rate of electrolytes into model cells for lithium ion batteries
【24h】

Influence of surface characteristics on the penetration rate of electrolytes into model cells for lithium ion batteries

机译:表面特征对锂离子电池模型电池渗透率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Filling of cells with liquid electrolytes is the time-determining step in the production of lithium-ion batteries (LIBs). The influencing factors are not completely understood and need further research. The adhesion of the solid components, i.e. anode, cathode and separators, to the electrolyte and the respective interfaces play an important role. In this study, the penetration of liquid electrolytes is monitored by a combination of tensiometry and chronoamperometry. A setup including all battery components is proposed as model for battery cells. Diethyl carbonate is employed as model for the electrolyte. The penetration rates of the liquid into a stepwise extended model setup (separator; anode; cathode; separator/anode; separator/cathode; and anode/separator/cathode) in confined geometry between glass plates are determined with reproducible results. A modified Washburn equation combining surface tensions of liquid and solids forming the interface, and complex geometries of separators and electrodes is used to develop the penetration model. Comparative measurements in a glove box yield comparable results with the real electrolyte solution. The penetration of the model electrolyte into ceramic-coated separators is significantly faster than into polyolefin separators due to higher surface roughness and higher polarity of ceramic-coated separators. The wetting times obtained by chronoamperometric measurements correlate with the tensiometric penetration rates. The higher the tensiometric penetration rate, the lower is the chronoamperometric wetting time. The results of the study contribute to a deeper understanding of the interactions between electrolyte and solid components in LIBs and provide a new method to pre-evaluate battery components.
机译:用液体电解质填充细胞是锂离子电池(Libs)生产中的时间确定步骤。影响因素并不完全理解并需要进一步研究。固体组分的粘附性,即阳极,阴极和隔膜,电解质和相应的界面起着重要作用。在该研究中,通过张力测定和计时法的组合监测液体电解质的渗透。提出了一种设置,包括所有电池组件作为电池单元的型号。碳酸二乙酯用作电解质的模型。液体的渗透速率在逐步的延长模型设置(分离器;阳极;阴极;隔膜/阳极;分离器/阴极;和阳极/隔膜;和阳极/隔板/阴极)以可再现的结果确定玻璃板之间的受限几何形状。用于形成界面的液体和固体表面张力的改性盥洗盆方程,以及分离器和电极的复杂几何形状用于开发穿透模型。手套箱中的比较测量结果与真正的电解质溶液产生相当的结果。由于较高的表面粗糙度和陶瓷涂覆的分离器的较高极性,模型电解质模型电解液渗透到陶瓷涂覆的隔板中的涂覆分离器的速度显着快于聚烯烃分离器。通过计时测量获得的润湿时间与张力渗透率相关。张力渗透率越高,较低的是计时率润湿时间。该研究的结果有助于更深入地了解LIBS中电解质和固体组分之间的相互作用,并提供了一种预先评估电池组件的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号