...
首页> 外文期刊>Biotechnology Progress >Computational Fluid Dynamics Modeling of Steady-State Momentum and Mass Transport in a Bioreactor for Cartilage Tissue Engineering
【24h】

Computational Fluid Dynamics Modeling of Steady-State Momentum and Mass Transport in a Bioreactor for Cartilage Tissue Engineering

机译:软骨组织工程生物反应器中稳态动量和质量输运的计算流体动力学建模

获取原文
获取原文并翻译 | 示例
           

摘要

Computational fluid dynamics (CFD) models to quantify momentum and mass transport under conditions of tissue growth will aid bioreactor design for development of tissue-engineered cartilage constructs. Fluent CFD models are used to calculate flow fields, shear stresses, and oxygen profiles around nonporous constructs simulating cartilage development in our concentric cylinder bioreactor. The shear stress distribution ranges from 1.5 to 12 dyn/cm~2 across the construct surfaces exposed to fluid flow and varies little with the relative number or placement of constructs in the bioreactor. Approximately 80"% of the construct surface exposed to flow experiences shear stresses between 1.5 and 4 dyn/cm~2, validating the assumption that the concentric cylinder bioreactor provides a relatively homogeneous hydrodynamic environment for construct growth. Species mass transport modeling for oxygen demonstrates that fluid-phase oxygen transport to constructs is uniform. Some O_2 depletion near the down stream edge of constructs is noted with minimum pO_2 values near the constructs of 35 mmHg (23% O_2 saturation). These values are above oxygen concentrations in cartilage in vivo, suggesting that bioreactor oxygfen concentrations likely do not affect chondrocyte growth. Scale-up studies demonstrate the utility and flexibility of CFD models to design and characterize bioreactors for growth of tissue-engineered cartilage.
机译:计算流体动力学(CFD)模型可以量化组织生长条件下的动量和质量传输,这将有助于生物反应器设计,以开发组织工程软骨构造。流利的CFD模型用于计算无孔结构周围的流场,切应力和氧分布,以模拟我们的同心圆柱生物反应器中的软骨发育。在暴露于流体流的构造物表面上,剪切应力分布范围为1.5至12 dyn / cm 2,并且随着构造物在生物反应器中的相对数量或位置的变化很小。暴露在流动中的构造物表面的大约80“%承受1.5至4 dyn / cm〜2的剪切应力,这证实了同心圆柱生物反应器为构造物的生长提供了相对均匀的流体动力学环境的假设。氧气的物质传质模型表明液相中氧向结构的迁移是均匀的,在结构下游边缘处的O_2损耗最小,在35 mmHg(23%O_2饱和度)附近的pO_2最小,这些值高于体内软骨中的氧浓度,放大研究表明,CFD模型在设计和表征生物反应器以促进组织工程性软骨生长方面的实用性和灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号