...
首页> 外文期刊>Biotechnology Progress >Using a CFD Model To Understand the Fluid Dynamics Promoting E. coli Breakage in a High-Pressure Homogenizer
【24h】

Using a CFD Model To Understand the Fluid Dynamics Promoting E. coli Breakage in a High-Pressure Homogenizer

机译:使用CFD模型了解高压均质机中促进大肠杆菌破损的流体动力学

获取原文
获取原文并翻译 | 示例
           

摘要

A Computational Fluid Dynamic (CFD) model of flow in a high-pressure homogenizing valve (APV Gaulin model 30CD) was developed with the Fluent software. The 2D model consists of an unstructured hexagonal mesh, dense in the regions of high gradients. The flow (single-phase) was modeled as laminar upstream of and in the channel (gap) and turbulent downstream of the channel exit. Applying a realizable kappa-epsilon turbulence model, the CFD model accurately predicted the effect of gap space on fluid dynamic conditions upstream (inled pressure and pressure gradient) and downstream (impact pressure) of the channel for a valve with a standard (CD-0) impact distance (0.25 mm) and a 1 cP fluid. This CFD model was then used to estimate the magnitude of the fluid dynamic parameters (except cavitation effects) presumed to be responsible for cell breakage, as a function of gap space, impact distance and fluid viscosity. The CFD models predicted that for a given volumetric flowrate the upstream fluid conditions (inlet pressure gradient, maximum channel strain rate) and the maximum energy dissipation rate in the post-gap jet depend only on the gap space and the fluid viscosity and not on the impact distance. The impact pressure however depends on the gap spacing, the fluid viscosity and especially the impact distnace. Experimental results indicate that higher inlet pressures are required to break cells, if the impact distance is increased. By conducting experiments to isolate individual cell breakage mechanisms for a single pass, threshold values were idnetified for breaking Escherichia coli cells: pressure gradient, 1.2 X 10~12 Pa/m; energy dissipation rate, 1.0 X 10~10 m~3/s~2; and impact pressure, 160 psig. By isolating the wall impact as the sole mechanism responsible for breaking the E. coli cells beteen 3000 and 6000 psig inlet pressure, a relationship between E. coli cell breakage rate and maximum wall impact pressure was established (eq 5).
机译:使用Fluent软件开发了高压均质阀中流动的计算流体力学(CFD)模型(APV Gaulin 30CD模型)。 2D模型由非结构化的六角形网格组成,在高梯度区域密集。流动(单相)被建模为通道(间隙)上游和内部的层流,以及通道出口下游的湍流。应用可实现的kappa-ε湍流模型,CFD模型可以准确地预测间隙空间对带有标准阀(CD-0)的阀的通道上游(内压力和压力梯度)和下游(冲击压力)的流体动力学条件的影响。 )冲击距离(0.25 mm)和1 cP的液体。然后,该CFD模型用于估计被认为是造成细胞破裂的流体动力学参数(空化效应除外)的大小,该大小取决于间隙空间,冲击距离和流体粘度。 CFD模型预测,对于给定的体积流量,后间隙射流中的上游流体条件(入口压力梯度,最大通道应变率)和最大能量耗散率仅取决于间隙空间和流体粘度,而不取决于冲击距离。然而,冲击压力取决于间隙间距,流体粘度以及尤其是冲击距离。实验结果表明,如果增加碰撞距离,则需要更高的入口压力来破坏电池。通过进行一次实验以分离单个细胞破裂机制的实验,确定了破裂大肠杆菌细胞的阈值:压力梯度为1.2 X 10〜12 Pa / m;耗能率1.0 X 10〜10 m〜3 / s〜2;冲击压力为160 psig。通过隔离壁撞击作为负责破坏大肠杆菌细胞入口压力在3000和6000 psig之间的唯一机制,在大肠杆菌细胞破裂率和最大壁撞击压力之间建立了关系(等式5)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号