首页> 外文期刊>Pure and Applied Geophysics >Ray Tracing Directly in a 3-D Ellipsoidal Earth Model for Multiphase Global Arrivals
【24h】

Ray Tracing Directly in a 3-D Ellipsoidal Earth Model for Multiphase Global Arrivals

机译:射线直接在3-D椭圆形地球模型中进行追踪,用于多相全球到达

获取原文
获取原文并翻译 | 示例
           

摘要

Seismic ray-tracing methods are widely used in seismology, with most such algorithms being executed in Cartesian or spherical coordinate systems. However, the actual Earth is not a perfect sphere but rather an ellipsoid, meaning that results calculated in spherical coordinates may be different from the actual situation. The general approach is to first calculate traveltimes in a spherical Earth model, then apply ellipsoidal time corrections to obtain more accurate traveltime data. Alternatively, one may directly conduct the ray tracing in the ellipsoidal Earth model without any time corrections. In this paper, we extend the functional of the multistage irregular shortest-path method, previously formulated for a spherical Earth model, to an ellipsoidal Earth model in order to trace multiphase global seismic arrivals. The results of two models indicate that the proposed algorithm has high computational accuracy, which can be further tuned by decreasing the secondary node spacing. Comparison tests indicate that the traveltime differences between the ellipsoidal and spherical coordinate ray-tracing methods cannot be ignored for direct P and S arrivals, reflected PcP and ScS arrivals, and reflected and converted PcS and ScP arrivals. The traveltime differences (TE - TS) computed by the ellipsoidal and spherical ray-tracing methods have different distribution patterns, being dependent on the source locations. However, in general, these traveltime differences (TE - TS) have relatively large negative values near the polar region and positive values near the equatorial region, except for sources located near the polar region. For ellipsoidal time correction in a specific case, the maximum differences between the traveltimes computed by the ellipsoidal coordinate ray-tracing method and the AK135 Traveltime Table after application of ellipsoidal time corrections are less than 0.1 s. Meanwhile, the maximum differences between the traveltimes predicted by the ellipsoidal coordin
机译:地震射线跟踪方法广泛用于地震学中,大多数这样的算法在笛卡尔或球形坐标系中执行。然而,实际的地球不是一个完美的球体,而是椭球,这意味着在球形坐标中计算的结果可能与实际情况不同。一般方法是首先在球形地球模型中计算行进时间,然后应用椭圆形时间校正以获得更准确的旅行时间数据。或者,可以在没有任何时间校正的情况下直接在椭圆形地球模型中进行射线跟踪。在本文中,我们将先前配制的用于球形地球模型的多级不规则短路方法的功能扩展到椭圆形地球模型,以追踪多相全球地震抵达。两个模型的结果表明所提出的算法具有高的计算精度,可以通过降低次级节点间距来进一步调整。比较测试表明,椭圆形和球面坐标光线跟踪方法之间的旅行时间差异不能忽视直接P和S射击,反射PCP和SCS到达,并反射和转换的PC和SCP到达。由椭圆形和球形射线跟踪方法计算的旅行时间差(TE - TS)具有不同的分布图案,取决于源位置。然而,通常,除了位于极性区域附近的源之外,这些旅行时间差(TE-TS)在赤道区域附近附近的极性区域和正值附近具有相对大的负值。对于特定情况下的椭椭椭圆形时间校正,在施加椭圆形时间校正之后,由椭圆坐标射线跟踪方法和Ak135行进表计算的行进时间之间的最大差异小于0.1秒。同时,椭圆型Coordin预测的旅行时间之间的最大差异

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号