...
首页> 外文期刊>Science and Technology for the Built Environment >Prediction of undisturbed ground temperature using analytical and numerical modeling. Part III: Experimental validation of a world-wide dataset
【24h】

Prediction of undisturbed ground temperature using analytical and numerical modeling. Part III: Experimental validation of a world-wide dataset

机译:使用分析和数值模拟预测未受干扰的地温。 第三部分:全球数据集的实验验证

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Undisturbed ground temperatures are often required for engineering applications, such as analyses of building heating and cooling load calculations and design of ground heat exchangers. In two companion articles, an automated procedure for generating a world-wide dataset of typical year ground temperatures has been developed and validated against measured results at 19 Soil Climate Analysis Network sites. This procedure relies on a two-harmonic relationship and five weather-related constantsannual average ground temperature, two temperature amplitudes, and two phase lagsto predict the undisturbed ground temperatures. These constant values generated for 4092 sites world-wide covered by short and tall grass are summarized in Appendix A and B in this article. In the United States, a one-harmonic model which relies on three constant values to estimate the ground temperatures is commonly used. The ASHRAE Handbook and ASHRAE District Heating Guide provide these constant values in North America and in a world-wide range, respectively. The estimated typical year ground temperatures using the Xing and Spitler procedure are compared to the measured results at the 19 Soil Climate Analysis Network sites, it shows the mean root mean square errors of all sites are within 1.3 degrees C-1.6 degrees C (2.3 degrees F-2.9 degrees F) at 5-100cm (2-40") depths, which are 0.7 degrees C-1.4 degrees C (1.3 degrees F-2.5 degrees F) lower than the root mean square errors given by the commonly used procedures in United States. Estimations of the peak (maximum/minimum) ground temperature over multiple years are also important. Thus, a correction factor beta is introduced in the two-harmonic model, the newly developed simplified design model could now be used to predict typical year ground temperatures and peak ground temperatures of multiple years. For a typical year, the correction factor is set to be 1. It is suggested that the correction factor of 1.6 to be chosen, so as to use the simplified design model to estimated maximum/minimum ground temperatures of multiple years.
机译:工程应用通常需要未受干扰的地温,例如建筑加热和冷却载荷计算和地面热交换器设计的分析。在两个伴随文章中,已经开发了一种用于生成典型年度地下温度的全球数据集的自动化程序,并针对19种土壤气候分析网络网站进行测量结果。该过程依赖于双谐波关系和五个与天气相关的周到平均水平,两个温度幅度和两相Lagsto预测未受干扰的地面温度。在本文中的附录A和B中概述了在全球范围内的4092个站点产生的这些常数值。在美国,常用于三个恒定值依赖于三个恒定值的单次谐波模型。 ASHRAE手册和ASHRAE区采访指南分别为北美和全球范围内提供了这些常量价值。使用xing和烟道手术的估计典型的典型的地面温度与19土壤气候分析网络网站的测量结果进行比较,它显示所有网站的平均均方误差在1.3摄氏度范围内(2.3度F-2.9度F)在5-100cm(2-40“)深度,比常用程序给出的均方根均线低0.7摄氏度(1.3度F-2.5度)美国的峰值多年的地面温度和峰值地面温度。对于典型的一年,校正因子设定为1.它建议选择1.6的校正因子,以便使用简化的设计模型来估计最大/最小值多年的地面温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号