...
首页> 外文期刊>Organic Geochemistry: A Publication of the International Association of Geochemistry and Cosmochemistry >Carbon and hydrogen isotopic variations in gold tube gas pyrolysates from an Athabasca oil sand
【24h】

Carbon and hydrogen isotopic variations in gold tube gas pyrolysates from an Athabasca oil sand

机译:Athabasca油砂的金管气体热解法中的碳和氢同位素变异

获取原文
获取原文并翻译 | 示例
           

摘要

Closed system gold tube pyrolysis experiments were conducted on an oil sand bitumen from the Athabasca region in western Canada to investigate gas isotope variation with heating temperatures. Experiments were carried out at 350-650 degrees C and a pressure of 50 MPa, with heating rates of 2 degrees C/h and 20 degrees C/h. The progressive cracking of bitumen and liquid oil lead to continuous release of methane with increasing pyrolysis temperatures, while the yields of wet gas components increase initially at the lower temperature range and then decrease drastically at high temperatures. A general trend of C-13- and H-2-enrichment in the gas products is seen with increasing pyrolysis temperatures due to thermal cracking of various hydrocarbon and non-hydrocarbon components. Isotopic variations can be quite extensive, commonly occurring for both hydrocarbon gases and CO2 as pyrolysis progresses. A carbon isotopic rollover (isotope of gas component shifting from C-13 enrichment to C-12-enrichment with increasing temperature) occurs for bulk hydrocarbon gas components at low temperature (< 450 degrees C), while rollover only occurs for ethane and propane at high temperature (> 550 degrees C), where partial reversal (lower carbon numbered gas component becomes more C-13-enriched relative to higher carbon numbered ones) also exists. The isotopic values of CO2 show a wide range of variation with the highest C-delta 13 value seen at the lowest temperature while the lowest C-delta 13 value occurs at 500 degrees C and 550 degrees C for 2 degrees C/h and 20 degrees C/h, respectively. Relative C-13-enrichment occurs only in the high temperature range. The unusual carbon isotope ratios of CO2 in pyrolysates is likely related to biodegradation influence on the precursors, but further investigation is still called for. Hydrogen isotopic values of hydrocarbon gases show even more dramatic variation than that seen for carbon. While methane is progressively H-2-enriched to 650 degrees C, ethane and propane are relatively H-2-enriched when the pyrolysis temperature is < 500 degrees C, while the trend is inverted at higher temperatures. Data presented here clearly deviate from the trajectories expected by simple equilibrium or Rayleigh-type kinetic cracking models. Dynamic generation, destruction and mixing processes govern the final isotopic signature in an associated gas product. Isotopic roll-over and reversal seem to be a common phenomenon during thermal evolution where heterogeneous precursors are available. While the reaction system of pyrolysis at high temperature differs completely from source rock evolution at low temperature and some artifacts are inevitably involved, the isotope behavior observed here may provide some insights into the complexity in natural cases and help our understanding of the mechanisms of isotopic evolution during thermal maturation. (C) 2020 Elsevier Ltd. All rights reserved.
机译:封闭式系统金管热解实验是在加拿大西部Athabasca地区的油砂沥青中进行,以研究加热温度的气体同位素变化。实验在350-650℃和50MPa的压力下进行,加热速率为2℃/ h和20℃/ h。沥青和液体油的逐渐破裂导致甲烷的连续释放随着热解温度的增加,而湿气体成分的产率最初在较低温度范围内升高,然后在高温下急剧下降。由于各种烃和非烃组分的热破裂,随着热解温度的增加,可以看到气体产品中C-13-和H-2和H-2的一般趋势。同位素变化可以是非常广泛的,通常用于烃类气体和二氧化碳作为热解进展。对于低温(<450℃)的散装烃气体组分,在散装烃气体组分(<450℃),碳同位素侧翻(从C-13富集富集至C-12富集的同位素),而乙烷和丙烷在还存在高温(> 550℃),其中部分逆转(下碳编号气体组分相对于较高碳编号的富含C-13)也存在。 CO2的同位素值显示出在最低温度下看到的最高C-Delta 13值的宽范围,而最低的C-Delta 13值发生在500℃和550℃下2℃/ h和20度C / H分别。相对C-13富集仅在高温范围内发生。昏昏酯酸盐中CO 2的异常碳同位素比可能与对前体的生物降解影响有关,但仍需要进一步调查。烃类气体的氢同位素值显示出比碳的含量更大的变化。虽然甲烷逐渐富含H-2富集至650℃,但是当热解温度<500℃时,乙烷和丙烷相对H-2富集,而趋势在较高温度下倒置。这里提出的数据清楚地偏离了简单的平衡或瑞利型动力裂解模型的预期的轨迹。动态生成,破坏和混合过程控制相关气体产品中的最终同位素签名。同位素翻转和逆转似乎是在热逸出过程中的常见现象,其中异质前体可用。虽然高温热解的反应系统完全来自低温下的源岩换,但一些伪像不可避免地涉及,但这里观察到的同位素行为可以在自然案例中的复杂性提供一些洞察力,并帮助我们理解同位素演变的机制在热成熟过程中。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号