...
首页> 外文期刊>ACS nano >Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes
【24h】

Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes

机译:锂电池电极的电化学氧化电子和离子导电纳米结构嵌段共聚物

获取原文
获取原文并翻译 | 示例
           

摘要

Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σ_(e,ox)) increases from 10~(-7) S/cm to 10~(-4) S/cm. At high oxidation levels, σ_(e,ox) approaches 10~(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10~(-4) to 10~(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10~(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.
机译:可以同时传导纳米级电子电荷和离子电荷的嵌段共聚物可以用作固态电池电极的创新导电粘合剂材料。这项工作的目的是研究双(三氟甲磺酰基)酰亚胺锂(LiTFSI)盐电化学氧化的聚(3-己基噻吩)-b-聚(环氧乙烷)(P3HT-PEO)共聚物的电子电荷传输锂电池的充电/放电循环。我们使用固态三端电化学电池,该电池可同时进行电导率测量并控制P3HT的电化学掺杂。在低氧化水平下(电子摩尔数与电极中3-己基噻吩基团摩尔数之比),电子电导率(σ_(e,ox))从10〜(-7)S / cm增加到10〜(- 4)S /厘米在高氧化水平下,σ_(e,ox)接近10〜(-2)S / cm。当将P3HT-PEO用作具有LiFePO4活性材料的正电极中的导电粘合剂时,P3HT在充电/放电循环的电压窗口内具有电化学活性。 P3HT-PEO粘合剂的电子电导率在充电/放电循环的大部分潜在窗口中处于10〜(-4)至10〜(-2)S / cm的范围内。这允许有效的电子传导,并且观察到的充电/放电容量接近LiFePO4的理论极限。但是,在放电周期结束时,电子电导率急剧下降至10〜(-7)S / cm,这意味着“导电”粘合剂现在处于电绝缘状态。我们的导电粘合剂在正极的电子导电状态和绝缘状态之间切换的能力为充电电池的自动过放电保护提供了前所未有的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号