...
首页> 外文期刊>ACS nano >Carbon nanotubes instruct physiological growth and functionally mature syncytia: Nongenetic engineering of cardiac myocytes
【24h】

Carbon nanotubes instruct physiological growth and functionally mature syncytia: Nongenetic engineering of cardiac myocytes

机译:碳纳米管指示生理生长和功能成熟的合胞体:心肌细胞的非基因工程

获取原文
获取原文并翻译 | 示例
           

摘要

Myocardial tissue engineering currently represents one of the most realistic strategies for cardiac repair. We have recently discovered the ability of carbon nanotube scaffolds to promote cell division and maturation in cardiomyocytes. Here, we test the hypothesis that carbon nanotube scaffolds promote cardiomyocyte growth and maturation by altering the gene expression program, implementing the cell electrophysiological properties and improving networking and maturation of functional syncytia. In our study, we combine microscopy, biological and electrophysiological methodologies, and calcium imaging, to verify whether neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes acquire a physiologically more mature phenotype compared to control (gelatin). We show that the carbon nanotube substrate stimulates the induction of a gene expression profile characteristic of terminal differentiation and physiological growth, with a 2-fold increase of α-myosin heavy chain (P < 0.001) and upregulation of sarcoplasmic reticulum Ca~(2+) ATPase 2a. In contrast, markers of pathological hypertrophy remain unchanged (β-myosin heavy chain, skeletal α-actin, atrial natriuretic peptide). These modifications are paralleled by an increase of connexin-43 gene expression, gap junctions and functional syncytia. Moreover, carbon nanotubes appear to exert a protective effect against the pathologic stimulus of phenylephrine. Finally, cardiomyocytes on carbon nanotubes demonstrate a more mature electrophysiological phenotype of syncytia and intracellular calcium signaling. Thus, carbon nanotubes interacting with cardiomyocytes have the ability to promote physiological growth and functional maturation. These properties are unique in the current vexing field of tissue engineering, and offer unprecedented perspectives in the development of innovative therapies for cardiac repair.
机译:心肌组织工程目前代表了最现实的心脏修复策略之一。我们最近发现了碳纳米管支架促进心肌细胞分裂和成熟的能力。在这里,我们测试了碳纳米管支架通过改变基因表达程序,实现细胞电生理特性以及改善功能合胞体网络和成熟来促进心肌细胞生长和成熟的假设。在我们的研究中,我们结合了显微镜,生物学和电生理学方法以及钙成像技术,以验证培养在多壁碳纳米管基质上的新生大鼠心室心肌细胞是否比对照(明胶)具有更成熟的生理表型。我们发现,碳纳米管基质刺激了终末分化和生理生长的基因表达谱特征的诱导,α-肌球蛋白重链增加了2倍(P <0.001),并且肌浆网Ca〜(2+ )ATPase 2a。相反,病理性肥大的标志物保持不变(β-肌球蛋白重链,骨骼肌α-肌动蛋白,心钠素)。这些修饰与连接蛋白43基因表达,间隙连接和功能合胞体的增加平行。而且,碳纳米管似乎对去氧肾上腺素的病理刺激具有保护作用。最后,碳纳米管上的心肌细胞表现出更成熟的合胞体和细胞内钙信号传导的电生理表型。因此,与心肌细胞相互作用的碳纳米管具有促进生理生长和功能成熟的能力。这些特性在当前令人烦恼的组织工程领域中是独一无二的,并为开发用于心脏修复的创新疗法提供了空前的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号