...
首页> 外文期刊>ACS nano >Formation of nitrogen-doped graphene nanoribbons via chemical unzipping
【24h】

Formation of nitrogen-doped graphene nanoribbons via chemical unzipping

机译:通过化学解链形成氮掺杂石墨烯纳米带

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we carried out chemical oxidation studies of nitrogen-doped multiwalled carbon nanotubes (CNx-MWCNTs) using potassium permanganate in order to obtain nitrogen-doped graphene nanoribbons. Reaction parameters such as oxidation reaction, reaction time, the oxidizer to nanotube mass ratio, and the temperature were varied, and their effect was carefully analyzed. The presence of nitrogen atoms makes CNx-MWCNTs more reactive toward oxidation when compared to undoped multiwalled carbon nanotubes (MWCNTs). High-resolution transmission electron microscopy studies indicate that the oxidation of the graphitic layers within CNx-MWCNTs results in the unzipping of large diameter nanotubes and the formation of a disordered oxidized carbon coating on small diameter nanotubes. The nitrogen content within unzipped CNx-MWCNTs decreased as a function of the oxidation time, temperature, and oxidizer concentration. By controlling the degree of oxidation, the N atomic % could be reduced from 1.56% in pristine CNx-MWCNTs down to 0.31 atom % in nitrogen-doped oxidized graphene nanoribbons. A comparative thermogravimetric analysis reveals a lower thermal stability of the (unzipped) oxidized CNx-MWCNTs when compared to MWCNT samples. The oxidized graphene nanoribbons were chemically and thermally reduced and yielded nitrogen-doped graphene nanoribbons (N-GNRs). The thermal reduction at relatively low temperature (300 C) results in graphene nanoribbons with 0.37 atom % of nitrogen. This method represents a novel route to preparation of bulk quantities of nitrogen-doped unzipped carbon nanotubes, which is able to control the doping level in the resulting reduced GNR samples. Finally, the electrochemical properties of these materials were evaluated.
机译:在这项工作中,我们进行了使用高锰酸钾对氮掺杂的多壁碳纳米管(CNx-MWCNT)的化学氧化研究,从而获得了氮掺杂的石墨烯纳米带。改变了氧化反应,反应时间,氧化剂与纳米管的质量比,温度等反应参数,并对其效果进行了仔细分析。与未掺杂的多壁碳纳米管(MWCNT)相比,氮原子的存在使CNx-MWCNT对氧化更具反应性。高分辨率透射电子显微镜研究表明,CNx-MWCNTs中石墨层的氧化导致大直径纳米管解压缩,并在小直径纳米管上形成无序氧化碳涂层。未压缩的CNx-MWCNT中的氮含量随氧化时间,温度和氧化剂浓度而降低。通过控制氧化程度,N原子百分比可以从原始CNx-MWCNTs中的1.56%降低到氮掺杂的氧化石墨烯纳米带中的0.31原子%。对比热重分析显示,与MWCNT样品相比,(未压缩)氧化的CNx-MWCNT具有较低的热稳定性。氧化的石墨烯纳米带经过化学和热还原,生成了氮掺杂的石墨烯纳米带(N-GNR)。在相对较低的温度(300℃)下的热还原导致具有0.37原子%的氮的石墨烯纳米带。该方法代表了制备大量氮掺杂的未压缩碳纳米管的新颖方法,该方法能够控制所得还原的GNR样品中的掺杂水平。最后,评估了这些材料的电化学性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号