...
首页> 外文期刊>ACS nano >Fowler - Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles
【24h】

Fowler - Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles

机译:Fowler-Nordheim隧穿在几乎接触的纳米颗粒之间诱导电荷转移等离子体

获取原文
获取原文并翻译 | 示例
           

摘要

Reducing the gap between two metal nanoparticles down to atomic dimensions uncovers novel plasmon resonant modes. Of particular interest is a mode known as the charge transfer plasmon (CTP). This mode has been experimentally observed in touching nanoparticles, where charges can shuttle between the nanoparticles via a conductive path. However, the CTP mode for nearly touching nanoparticles has only been predicted theoretically to occur via direct tunneling when the gap is reduced to ~0.4 nm. Because of challenges in fabricating and characterizing gaps at these dimensions, experiments have been unable to provide evidence for this plasmon mode that is supported by tunneling. In this work, we consider an alternative tunneling process, that is, the well-known Fowler-Nordheim (FN) tunneling that occurs at high electric fields, and apply it for the first time in the theoretical investigation of plasmon resonances between nearly touching nanoparticles. This new approach relaxes the requirements on gap dimensions, and intuitively suggests that with a sufficiently high-intensity irradiation, the CTP can be excited via FN tunneling for a range of subnanometer gaps. The unique feature of FN tunneling induced CTP is the ability to turn on and off the charge transfer by varying the intensity of an external light source, and this could inspire the development of novel quantum devices.
机译:将两个金属纳米粒子之间的间隙减小到原子尺寸,可以发现新颖的等离子体共振模式。特别令人感兴趣的是一种称为电荷转移等离子体激元(CTP)的模式。已经在接触纳米颗粒的实验中观察到了这种模式,其中电荷可以通过导电路径在纳米颗粒之间穿梭。然而,理论上仅预测当间隙减小至〜0.4 nm时,通过直接隧穿会发生几乎接触纳米粒子的CTP模式。由于在这些尺寸上制造和表征间隙方面存在挑战,因此实验无法为隧道效应支持的这种等离激元模式提供证据。在这项工作中,我们考虑了另一种隧穿过程,即在高电场下发生的众所周知的Fowler-Nordheim(FN)隧穿,并将其首次应用于在几乎接触的纳米粒子之间的等离振子共振的理论研究中。这种新方法放宽了对间隙尺寸的要求,并直观地表明,在足够高强度的照射下,可以通过FN隧穿对一系列亚纳米间隙进行CTP激发。 FN隧穿引起的CTP的独特功能是通过改变外部光源的强度来开启和关闭电荷转移的能力,这可以激发新型量子器件的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号