...
首页> 外文期刊>ACS nano >Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy
【24h】

Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy

机译:使用扫描隧道显微镜定制原子级及以上的石墨烯中石墨烯层之间的局部相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

With recent developments in carbon-based electronics, it is imperative to understand the interplay between the morphology and electronic structure in graphene and graphite. We demonstrate controlled and repeatable vertical displacement of the top graphene layer from the substrate mediated by the scanning tunneling microscopy (STM) tip - sample interaction, manifested at the atomic level as well as over superlattices spanning several tens of nanometers. Besides the full-displacement, we observed the first half-displacement of the surface graphene layer, confirming that a reduced coupling rather than a change in lateral layer stacking is responsible for the triangular/honeycomb atomic lattice transition phenomenon, clearing the controversy surrounding it. Furthermore, an atomic scale mechanical stress at a grain boundary in graphite, resulting in the localization of states near the Fermi energy, is revealed through voltage-dependent imaging. A method of producing graphene nanoribbons based on the manipulation capabilities of the STM is also implemented.
机译:随着碳基电子学的最新发展,必须了解石墨烯和石墨的形态与电子结构之间的相互作用。我们证明了通过扫描隧道显微镜(STM)尖端-样品相互作用介导的顶层石墨烯层从基材的可控制和可重复的垂直位移,这种相互作用在原子水平以及跨越数十纳米的超晶格上均表现出来。除了全位移,我们还观察到了表面石墨烯层的前半位移,这证实了减少的耦合而不是横向层堆叠的变化是造成三角形/蜂窝原子晶格过渡现象的原因,从而消除了围绕它的争议。此外,通过电压依赖性成像显示了石墨中晶界处的原子级机械应力,从而导致了费米能量附近状态的定位。还实现了基于STM的操纵能力生产石墨烯纳米带的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号