...
首页> 外文期刊>ACS nano >Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility >11 000 cm~2/V·s
【24h】

Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility >11 000 cm~2/V·s

机译:低压背压大气压化学气相沉积石墨烯条纹沟道晶体管,具有高κ介电常数,室温迁移率> 11000 cm〜2 / V·s

获取原文
获取原文并翻译 | 示例
           

摘要

Utilization of graphene may help realize innovative low-power replacements for III-V materials based high electron mobility transistors while extending operational frequencies closer to the THz regime for superior wireless communications, imaging, and other novel applications. Device architectures explored to date suffer a fundamental performance roadblock due to lack of compatible deposition techniques for nanometer-scale dielectrics required to efficiently modulate graphene transconductance (g_m) while maintaining low gate capacitance-voltage product (C_(gs)V_(gs)). Here we show integration of a scaled (10 nm) high-κ gate dielectric aluminum oxide (Al_2O_3) with an atmospheric pressure chemical vapor deposition (APCVD)-derived graphene channel composed of multiple 0.25 μm stripes to repeatedly realize room-temperature mobility of 11 000 cm ~2/V·s or higher. This high performance is attributed to the APCVD graphene growth quality, excellent interfacial properties of the gate dielectric, conductivity enhancement in the graphene stripes due to low t _(ox)/W_(graphene) ratio, and scaled high-κ dielectric gate modulation of carrier density allowing full actuation of the device with only ±1 V applied bias. The superior drive current and conductance at V_(dd) = 1 V compared to other top-gated devices requiring undesirable seed (such as aluminum and poly vinyl alcohol)-assisted dielectric deposition, bottom gate devices requiring excessive gate voltage for actuation, or monolithic (nonstriped) channels suggest that this facile transistor structure provides critical insight toward future device design and process integration to maximize CVD-based graphene transistor performance.
机译:石墨烯的使用可以帮助实现基于III-V材料的高电子迁移率晶体管的创新型低功耗替代品,同时将工作频率扩展到接近THz的水平,从而实现出色的无线通信,成像和其他新颖应用。迄今为止探索的设备架构由于缺乏用于纳米级电介质的兼容沉积技术而受到基本性能障碍,而这种沉积技术需要有效地调制石墨烯跨导(g_m),同时保持低栅极电容-电压乘积(C_(gs)V_(gs))。在这里,我们展示了缩放的(10 nm)高κ栅介电氧化铝(Al_2O_3)与大气压化学气相沉积(APCVD)衍生的石墨烯通道的集成,该通道由多个0.25μm条纹组成,可重复实现11的室温迁移率000 cm〜2 / V·s或更高。此高性能归因于APCVD石墨烯的生长质量,栅极电介质的出色界面特性,由于低的t_(ox)/ W_(石墨烯)比而导致的石墨烯条纹中的电导率增强,以及比例缩放的高κ介电栅极调制载流子密度允许仅施加±1 V的偏压即可完全驱动器件。与其他需要不良种子(例如铝和聚乙烯醇)辅助介电沉积的顶部浇口器件,需要用于驱动的​​栅极电压过高的底部栅器件或单片器件相比,在V_(dd)= 1 V时,优越的驱动电流和电导率(非条纹)通道表明,这种易用的晶体管结构为将来的器件设计和工艺集成提供了至关重要的见解,以最大限度地提高基于CVD的石墨烯晶体管的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号