...
首页> 外文期刊>ACS nano >Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis
【24h】

Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis

机译:沙瓦氏假单胞菌初始表面定殖过程中细胞大小稳态的演变和生长速率多样性

获取原文
获取原文并翻译 | 示例
           

摘要

Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ApilA, AmshA-D, Aflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.
机译:细胞大小控制和体内平衡是细菌代谢的基本特征。最近的研究表明,细胞在出生和分裂之间会增加一个恒定的大小(“加法器”模型)。但是,尚不清楚细胞大小的稳态如何受到异质微环境(例如生物膜形成过程中的微环境)的存在的影响。沙瓦氏菌(Shewanella oneidensis)MR-1可以通过细胞外电子传输(EET)在一系列表面上使用多种能源,这会影响生长,代谢和大小多样性。在这里,我们以单细胞分辨率跟踪细菌表面群落,以表明细菌运动性附肢不仅会影响二维生物膜到三维生物膜的生长并控制分裂后的细胞命运,而且还会强烈影响细胞大小的稳态。对于每一代,我们发现停留在表面上并继续分裂的细胞(不分离种群)的平均生长速率和在下一次分裂之前分离的细胞(分离种群)的平均生长速率大致恒定。但是,在每一代中,非离散人群的增长率分布较窄,而离散人群的增长率分布较宽。有趣的是,对于分离型和非分离型种群,附肢缺失突变体(ApilA,AmshA-D,Aflg)的生长速率分布均明显高于野生型,这表明Shewanella附肢对于感知和整合有助于大小稳态。此外,我们的研究结果表明,感官和运动功能的附件多路复用有助于细胞大小失调。这些结果可能潜在地提供一个框架,用于在沙门氏菌种群中产生代谢多样性,以优化异质环境中的EET。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号