...
首页> 外文期刊>ACS nano >Reconstituted Lipoprotein: A Versatile Class of Biologically-Inspired Nanostructures
【24h】

Reconstituted Lipoprotein: A Versatile Class of Biologically-Inspired Nanostructures

机译:重构脂蛋白:一类多功能的生物启发的纳米结构。

获取原文
获取原文并翻译 | 示例
           

摘要

One of biology’s most pervasive nanostructures, the phospholipid membrane, represents an ideal scaffold for a host of nanotechnology applications. Whether engineering biomimetic technologies or designing therapies to interface with the cell, this adaptable membrane can provide the necessary molecular-level control of membrane-anchored proteins, glycopeptides, and glycolipids. If appropriately prepared, these components can replicate in vitro or influence in vivo essential living processes such as signal transduction, mass transport, and chemical or energy conversion. To satisfy these requirements, a lipid-based, synthetic nanoscale architecture with molecular-level tunability is needed. In this regard, discrete lipid particles, including reconstituted high density lipoprotein (HDL), have emerged as a versatile and elegant solution. Structurally diverse, native biological HDLs exist as discoidal lipid bilayers of 5?8 nm diameter and lipid monolayer-coated spheres 10?15 nm in diameter, all belted by a robust scaffolding protein. These supramolecular assemblies can be reconstituted using simple self-assembly methods to incorporate a broad range of amphipathic molecular constituents, natural or artificial, and provide a generic platform for stabilization and transport of amphipathic and hydrophobic elements capable of docking with targets at biological or inorganic surfaces. In conjunction with top-down or bottom-up engineering approaches, synthetic HDL can be designed, arrayed, and manipulated for a host of applications including biochemical analyses and fundamental studies of molecular structure. Also highly biocompatible, these assemblies are suitable for medical diagnostics and therapeutics. The collection of efforts reviewed here focuses on laboratory methods by which synthetic HDLs are produced, the advantages conferred by their nanoscopic dimension, and current and emerging applications.
机译:生物学上最普及的纳米结构之一,磷脂膜,代表了许多纳米技术应用的理想支架。无论是工程仿生技术还是设计与细胞对接的疗法,这种可适应的膜都可以对膜锚定的蛋白质,糖肽和糖脂提供必要的分子水平控制。如果适当地制备,这些成分可以在体外复制或在体内影响必需的生活过程,例如信号转导,质量传输以及化学或能量转换。为了满足这些要求,需要具有分子水平可调性的基于脂质的合成纳米级结构。在这方面,离散的脂质颗粒,包括重构的高密度脂蛋白(HDL),已经成为一种通用且美观的解决方案。结构多样的天然生物高密度脂蛋白以直径为5-8 nm的盘状脂质双层和直径为10-15 nm的脂质单层包被球存在,所有这些都被坚固的支架蛋白束缚。这些超分子组装可以使用简单的自组装方法进行重组,以结合各种天然或人造的两亲分子成分,并为稳定和运输能够与目标在生物或无机表面对接的两亲和疏水性分子提供通用平台。结合自上而下或自下而上的工程方法,可以为包括生化分析和分子结构基础研究在内的许多应用程序设计,排列和处理合成HDL。这些组件还具有高度的生物相容性,适用于医学诊断和治疗。本文回顾的工作重点集中在生产合成HDL的实验室方法,其纳米级尺寸所带来的优势以及当前和新兴的应用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号