...
首页> 外文期刊>ACS nano >Encapsulated inorganic nanostructures: A route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes
【24h】

Encapsulated inorganic nanostructures: A route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes

机译:封装的无机纳米结构:在碳纳米管中获得可调节的,非共价的管上电势的途径

获取原文
获取原文并翻译 | 示例
           

摘要

The large variety of hybrid carbon nanotube systems synthesized to date (e.g., by encapsulation, wrapping, or stacking) has provided a body of interactions with which to modify the host nanotubes to produce new functionalities and control their behavior. Each, however, has limitations: hybridization can strongly degrade desirable nanotube properties; noncovalent interactions with molecular systems are generally weak; and interlayer interactions in layered nanotubes are strongly dependent upon the precise stacking sequence. Here we show that the electrostatic/polarization interaction provides a generic route to designing unprecedented, sizable and highly modulated (1 eV range), noncovalent on-tube potentials via encapsulation of inorganic partially ionic phases where charge anisotropy is maximized. Focusing on silver iodide (AgI) nanowires inside single-walled carbon nanotubes, we exploit the polymorphism of AgI, which creates a variety of different charge distributions and, consequently, interactions of varying strength and symmetry. Combined ab initio calculations, high-resolution transmission electron microscopy, and scanning tunneling microscopy and spectroscopy are used to demonstrate symmetry breaking of the nanotube wave functions and novel electronic superstructure formation, which we then correlate with the modulated, noncovalent electrostatic/polarization potentials from the AgI filling. These on-tube potentials are markedly stronger than those due to other noncovalent interactions known in carbon nanotube systems and lead to significant redistribution of the wave function around the nanotube, with implications for conceptually new single-nanotube electronic devices and molecular assembly. Principles derived can translate more broadly to relating graphene systems, for designing/controlling potentials and superstructures.
机译:迄今为止合成的各种各样的杂化碳纳米管系统(例如,通过封装,包裹或堆叠)已经提供了相互作用的主体,通过该相互作用可以修饰主体纳米管以产生新的功能并控制其行为。但是,每种方法都有局限性:杂交会大大降低所需的纳米管性能。与分子系统的非共价相互作用通常较弱;层状纳米管中的分子间相互作用以及层间相互作用在很大程度上取决于精确的堆叠顺序。在这里,我们表明,静电/极化相互作用为包封电荷各向异性最大的无机部分离子相的封装提供了一种设计前所未有的,可调整的且高度调制的(1 eV范围)非共价管上电势的通用途径。着眼于单壁碳纳米管内部的碘化银(AgI)纳米线,我们利用了AgI的多态性,该多态性产生了各种不同的电荷分布,并因此产生了强度和对称性不同的相互作用。结合了从头算,高分辨率透射电子显微镜,扫描隧道显微镜和光谱学的方法,证明了纳米管波函数的对称性破坏和新型电子超结构的形成,然后我们将其与来自纳米管的调制非共价静电/极化电位相关联。 AgI填充。这些管上电势比由于碳纳米管系统中已知的其他非共价相互作用而显着强,并且导致碳纳米管周围的波函数发生显着的重新分布,这在概念上暗示了新的单纳米管电子设备和分子组装的意义。所推导的原理可以更广泛地转化为相关的石墨烯系统,用于设计/控制电势和上层建筑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号