...
首页> 外文期刊>ACS nano >Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis
【24h】

Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis

机译:使用等离子增强热泳的等离子纳米粒子的光导可逆组装。

获取原文
获取原文并翻译 | 示例
           

摘要

Reversible assembly of plasmonic nanoparticles can be used to modulate their structural, electrical, and optical properties. Common and versatile tools in nanoparticle manipulation and assembly are optical tweezers, but these require tightly focused and high-power (10-100 mW/mu m(2)) laser beams with precise optical alignment, which significantly hinders their applications. Here we present light-directed reversible assembly of plasmonic nanoparticles with a power intensity below 0.1 mW/mu m(2). Our experiments and simulations reveal that such a low-power assembly is enabled by thermophoretic migration of nanoparticles due to the plasmon-enhanced photothermal effect and the associated enhanced local electric field over a plasmonic substrate. With software-controlled laser beams, we demonstrate parallel and dynamic manipulation of multiple nanoparticle assemblies. Interestingly, the assemblies formed over plasmonic substrates can be subsequently transported to nonplasmonic substrates. As an example application, we selected surface-enhanced Raman scattering spectroscopy, with tunable sensitivity. The advantages provided by plasmonic assembly of nanoparticles are the following: (1) low-power, reversible nanoparticle assembly, (2) applicability to nanoparticles with arbitrary morphology, and (3) use of simple optics. Our plasmon-enhanced thermophoretic technique will facilitate further development and application of dynamic nanoparticle assemblies, including biomolecular analyses in their native environment and smart drug delivery.
机译:等离子体纳米颗粒的可逆组装可用于调节其结构,电学和光学性质。纳米镊子的常规和通用工具是光学镊子,但是它们需要紧密聚焦的高功率(10-100 mW /μm(2))激光束,并且必须具有精确的光学对准,这大大阻碍了它们的应用。在这里,我们介绍了功率强度低于0.1 mW /μm(2)的等离子体纳米颗粒的光导可逆组件。我们的实验和模拟表明,由于等离激元增强的光热效应以及在等离激元衬底上的相关增强局部电场,纳米粒子的热泳迁移使得能够实现这种低功率组装。使用软件控制的激光束,我们演示了多个纳米粒子组件的并行和动态操纵。有趣的是,在等离子体衬底上形成的组件可以随后被运输到非等离子体衬底上。作为示例应用,我们选择了具有可调灵敏度的表面增强拉曼散射光谱。纳米粒子的等离子体组装提供的优点如下:(1)低功率,可逆的纳米粒子组装;(2)适用于具有任意形态的纳米粒子;以及(3)使用简单的光学器件。我们的等离激元增强热泳技术将促进动态纳米颗粒组件的进一步开发和应用,包括在其天然环境中进行生物分子分析和智能药物递送。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号