...
首页> 外文期刊>ACS nano >Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles
【24h】

Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles

机译:磁引导的Pt修饰的氧化铁纳米粒子提高粒子碰撞电分析的碰撞速率

获取原文
获取原文并翻译 | 示例
           

摘要

An integrated microfluidic/magnetophoretic methodology was developed for improving signal response time and detection limits for the chronoamperometric observation of discrete nanoparticle/electrode interactions by electrocatalytic amplification. The strategy relied on Pt-decorated iron oxide nanoparticles which exhibit both superparamagnetism and electrocatalytic activity for the oxidation of hydrazine. A wet chemical synthetic approach succeeded in the controlled growth of Pt on the surface of FeO/Fe3O4 core/shell nanocubes, resulting in highly uniform Pt-decorated iron oxide hybrid nanoparticles with good dispersibility in water. The unique mechanism of hybrid nanoparticle formation was investigated by electron microscopy and spectroscopic analysis of isolated nanoparticle intermediates and final products. Discrete hybrid nanoparticle collision events were detected in the presence of hydrazine, an electrochemical indicator probe, using a gold microband electrode integrated into a microfluidic channel. In contrast with related systems, the experimental nanoparticle/electrode collision rate correlates more closely with simple theoretical approximations, primarily due to the accuracy of the nanoparticle tracking analysis method used to quantify nanoparticle concentrations and diffusion coefficients. Further modification of the microfluidic device was made by applying a tightly focused magnetic field to the detection volume to attract the magnetic nanoprobes to the microband working electrode, thereby resulting in a 6-fold increase to the relative frequency of chronoamperometric signals corresponding to discrete nanoparticle impact events.
机译:开发了一种集成的微流体/磁动力学方法,以改善信号响应时间和检测限,以通过电催化放大法对离散的纳米粒子/电极相互作用进行计时安培法观察。该策略依赖于装饰有Pt的氧化铁纳米颗粒,该纳米颗粒既表现出超顺磁性,又表现出对肼氧化的电催化活性。湿化学合成方法成功地在FeO / Fe3O4核/壳纳米立方体的表面上控制了Pt的生长,产生了高度均匀的Pt装饰的氧化铁杂化纳米颗粒,在水中具有良好的分散性。通过电子显微镜和分离的纳米粒子中间体和最终产物的光谱分析研究了杂化纳米粒子形成的独特机理。使用集成到微流通道中的金微带电极,在肼(一种电化学指示剂探针)的存在下检测到离散的杂化纳米粒子碰撞事件。与相关系统相比,实验纳米粒子/电极碰撞速率与简单的理论近似值之间的相关性更高,这主要归因于用于量化纳米粒子浓度和扩散系数的纳米粒子跟踪分析方法的准确性。通过将紧密聚焦的磁场施加到检测体积上以将磁性纳米探针吸引到微带工作电极上,对微流体装置进行了进一步的修改,从而使与离散纳米粒子撞击相对应的计时电流信号的相对频率增加了6倍。事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号