...
首页> 外文期刊>ACS nano >Encoding Abrupt and Uniform Dopant Profiles in Vapor-Liquid-Solid Nanowires by Suppressing the Reservoir Effect of the Liquid Catalyst
【24h】

Encoding Abrupt and Uniform Dopant Profiles in Vapor-Liquid-Solid Nanowires by Suppressing the Reservoir Effect of the Liquid Catalyst

机译:通过抑制液体催化剂的储库效应,在蒸气-液体-固态纳米线中编码突然和均匀的掺杂剂分布。

获取原文
获取原文并翻译 | 示例
           

摘要

Semiconductor nanowires (NWs) are often synthesized by the vaporliquidsolid (VLS) mechanism, a process in which a liquid droplet-supplied with precursors in the vapor phase-catalyzes the growth of a solid, crystalline NW. By changing the supply of precursors, the NW composition can be altered as it grows to create axial heterostructures, which are applicable to a range of technologies. The abruptness of the heterojunction is mediated by the liquid catalyst, which can act as a reservoir of material and impose a lower limit on the junction width. Here, we demonstrate that this reservoir effect is not a fundamental limitation and can be suppressed by selection of specific VLS reaction conditions. For Au-catalyzed Si NWs doped with P, we evaluate dopant profiles under a variety of synthetic conditions using a combination of elemental imaging with energy-dispersive X-ray spectroscopy and dopant-dependent wet-chemical etching. We observe a diameter-dependent reservoir effect under most conditions. However, at sufficiently slow NW growth rates (<= 250 nm/min) and low reactor pressures (<= 40 Torr), the dopant profiles are diameter independent and radially uniform with abrupt, sub-10 nm axial transitions. A kinetic model of NW doping, including the microscopic processes of (1) P incorporation into the liquid catalyst, (2) P evaporation from the catalyst, and (3) P crystallization in the Si NW, quantitatively explains the results and shows that suppression of the reservoir effect can be achieved when P evaporation is much faster than P crystallization. We expect similar reaction conditions can be developed for other NW systems and will facilitate the development of NW-based technologies that require uniform and abrupt heterostructures.
机译:半导体纳米线(NWs)通常是通过气液固(VLS)机理合成的,在该过程中,在汽相中提供有前驱物的液滴催化了固态结晶NW的生长。通过改变前驱物的供应量,可以随着NW组成的增长改变其组成,以产生轴向异质结构,这些异质结构适用于一系列技术。异质结的突变是由液态催化剂介导的,液态催化剂可以充当材料的储存库,并对结宽施加下限。在这里,我们证明了这种储层效应不是基本的限制,可以通过选择特定的VLS反应条件加以抑制。对于用P掺杂的Au催化的Si NW,我们结合元素成像和能量色散X射线光谱法以及依赖于掺杂剂的湿化学蚀刻技术,在各种合成条件下评估了掺杂剂的分布。在大多数情况下,我们观察到了与直径有关的储层效应。但是,在足够慢的NW生长速率(<= 250 nm / min)和低反应堆压力(<= 40 Torr)下,掺杂剂分布与直径无关,且径向均匀,具有突然的,低于10 nm的轴向过渡。 NW掺杂的动力学模型,包括以下过程的微观过程:(1)P掺入液体催化剂中;(2)P从催化剂中蒸发;(3)Si NW中的P结晶,定量地解释了结果并显示出抑制作用当磷的蒸发比磷的结晶快得多时,就可以达到储层效应的目的。我们期望可以为其他NW系统开发类似的反应条件,并将促进基于NW的技术的发展,这些技术需要均匀且突变的异质结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号