...
首页> 外文期刊>ACS nano >Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface
【24h】

Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface

机译:用等离子体金属氧化物超表面控制光的偏振态

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional plasmonic materials, namely, noble metals, hamper the realization of practical plasmonic devices due to their intrinsic limitations, such as lack of capabilities to tune in real-time their optical properties, failure to assimilate with CMOS standards, and severe degradation at increased temperatures. Transparent conducting oxide (TCO) is a promising alternative plasmonic material throughout the near- and mid-infrared wavelengths. In addition to compatibility with established silicon-based fabrication procedures, TCOs provide great flexibility in the design and optimization of plasmonic devices because their intrinsic optical properties can be tailored and dynamically tuned. In this work, we experimentally demonstrate metal oxide metasurfaces operating as quarter-waveplates (QWPs) over a broad near infrared (NIR) range from 1.75 to 2.5 mu m. We employ zinc oxide highly doped with gallium (Ga:ZnO) as the plasmonic constituent material of the metasurfaces and fabricate arrays of orthogonal nanorod pairs. Our Ga:ZnO metasurfaces provide a high degree of circular polarization across a broad range of two distinct optical bands in the NIR. Flexible broadband tunability of the QWP metasurfaces is achieved by the significant shifts of their optical bands and without any degradation in their performance after a post-annealing process up to 450 degrees C.
机译:常规的等离子材料,即贵金属,由于其固有的局限性,例如缺乏实时调整其光学特性的能力,无法与CMOS标准同化以及在高温下的严重降解而阻碍了实际等离子设备的实现。 。透明导电氧化物(TCO)是在近红外和中红外波长范围内都有希望的替代等离子体材料。除了与已建立的基于硅的制造程序兼容之外,TCO还可以在等离子设备的设计和优化中提供极大的灵活性,因为它们的固有光学特性可以定制和动态调整。在这项工作中,我们通过实验证明了在1.75至2.5微米的宽近红外(NIR)范围内,作为四分之一波片(QWP)的金属氧化物超表面。我们采用高度掺杂镓的氧化锌(Ga:ZnO)作为超表面的等离激元构成材料,并制造正交纳米棒对的阵列。我们的Ga:ZnO超表面可在NIR的两个不同光学带的宽范围内提供高度的圆偏振。 QWP超表面的灵活宽带可调性是通过其光波段的显着变化实现的,并且在经过最高450摄氏度的退火后,其性能没有任何下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号