首页> 外文期刊>ACS nano >Ultranarrow Band Absorbers Based on Surface Lattice Resonances in Nanostructured Metal Surfaces
【24h】

Ultranarrow Band Absorbers Based on Surface Lattice Resonances in Nanostructured Metal Surfaces

机译:纳米结构金属表面中基于表面晶格共振的超窄带吸收体

获取原文
获取原文并翻译 | 示例
           

摘要

Nanostructured metals have received a significant amount of attention in recent years due to their exciting plasmonic and photonic properties enabling strong field localization, light concentration, and strong absorption and scattering at their resonance frequencies. Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording, hot-electron collection, and biosensing. However, it is rather challenging to realize ultranarrow absorption bands using plasmonic materials due to large optical losses in metals that decrease the quality factor of optical resonators. Here, we theoretically and experimentally demonstrate an ultranarrow band absorber based on the surface lattice resonances (SLRs) in periodic nanowire and nanoring arrays on optically thick, reflecting metallic films. In experiments, we observed ultranarrow band resonant absorption peaks with a bandwidth of 12 nm and absorption amplitude exceeding 90% at visible frequencies. We demonstrate that the resonance absorption wavelength, amplitude of the absorption peak, and the bandwidth can be controlled by tuning the periodicity and the thickness of nanoring and nanowire arrays. Unlike conventional plasmonic absorbers utilizing common metal-insulator-metal stacks, our narrow band absorber consists solely of metals, facilitating stronger optical interaction between the SLR of periodic nanostructures and the highly reflective film. Moreover, by introducing asymmetry to the nanoringanowire hybrid system, we observe the spectral evolution of resonance splitting enabled by strong coupling between two individual SLRs arising from nanoring and nanowire arrays. Designing such all-metallic nanostructure arrays is a promising route for achieving ultranarrow band absorbers which can be used as absorption filters, narrow band thermal emitters in thermophotovoltaics, and plasmonic biosensors.
机译:近年来,由于纳米结构金属具有令人兴奋的等离子体和光子特性,可在其共振频率处实现强场定位,光集中以及强吸收和散射,因此备受关注。共振等离子体激元和超材料吸收器特别适合用于多种技术,包括光热疗法,热光电技术,热辅助磁记录,热电子收集和生物传感。但是,由于金属中的大量光学损失会降低光学谐振器的品质因数,因此使用等离激元材料实现超窄吸收带是相当具有挑战性的。在这里,我们在理论上和实验上证明了一种超窄带吸收器,该吸收器基于光学厚的反射金属膜上的周期性纳米线和纳米环阵列中的表面晶格共振(SLR)。在实验中,我们在可见频率观察到了带宽为12 nm的超窄带共振吸收峰,吸收幅度超过90%。我们证明,可以通过调节纳米环和纳米线阵列的周期性和厚度来控制共振吸收波长,吸收峰的幅度和带宽。与使用普通金属-绝缘体-金属叠层的常规等离子吸收器不同,我们的窄带吸收器仅由金属组成,从而促进了周期性纳米结构的SLR与高反射膜之间更强的光学相互作用。此外,通过将不对称性引入纳米环/纳米线混合系统,我们观察到由纳米环和纳米线阵列引起的两个独立SLR之间的强耦合使共振分裂的光谱演化。设计这样的全金属纳米结构阵列是获得超窄带吸收体的有前途的途径,该吸收体可用作吸收滤光片,热光伏中的窄带热发射体以及等离激元生物传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号