...
首页> 外文期刊>ACS nano >Reducing Blinking in Small Core-Multishell Quantum Dots by Carefully Balancing Confinement Potential and Induced Lattice Strain: The 'Goldilocks' Effect
【24h】

Reducing Blinking in Small Core-Multishell Quantum Dots by Carefully Balancing Confinement Potential and Induced Lattice Strain: The 'Goldilocks' Effect

机译:通过小心地平衡约束电位和诱发的晶格应变来减少小核-多壳量子点中的闪烁:“金锁”效应

获取原文
获取原文并翻译 | 示例
           

摘要

Currently, the most common way to reduce blinking in quantum dots (QDs) is accomplished by using very thick and/or perfectly crystalline CdS shells on CdSe cores. Ideally, a nontoxic material such as ZnS is preferred to be the outer material in order to reduce environmental and cytotoxic effects. Blinking suppression with multishell configurations of CdS and ZnS has been reported only for "giant" QDs of 15 nm or more. One of the main reasons for the limited progress is that the role that interfacial trap states play in blinking in these systems is not very well understood. Here, we show a "Goldilocks" effect to reduce blinking in small (similar to 7 nm) QDs by carefully controlling the thicknesses of the shells in multishell QDs. Furthermore, by correlating the fluorescence lifetime components with the fraction of time that a QD spends in the on-state, both with and without applying a threshold, we found evidence for two types of blinking that separately affect the average fluorescence lifetime of a single QD. A thorough characterization of the time-resolved fluorescence at the ensemble and single-particle level allowed us to propose a detailed physical model involving both short-lived interfacial trap states and long-lived surface trap states that are coupled. This model highlights a strategy of reducing QD blinking in small QDs by balancing the magnitude of the induced lattice strain, which results in the formation of interfacial trap states between the inner shell and the outer shell, and the confinement potential that determines how accessible the interfacial trap states are. The combination of reducing blinking while maintaining a small overall QD size and using a Cd-free outer shell of ZnS will be useful in a wide array of applications, particularly for advanced bioimaging.
机译:当前,减少量子点(QD)闪烁的最常见方法是在CdSe核上使用非常厚和/或完美结晶的CdS壳。理想地,诸如ZnS之类的无毒材料优选作为外部材料,以减少环境和细胞毒性作用。仅对于15 nm或更大的“巨型”量子点,已经报道了使用CdS和ZnS的多壳结构抑制闪烁的现象。进展有限的主要原因之一是,人们对这些系统中界面陷阱状态在眨眼中所起的作用还不甚了解。在这里,我们展示了通过小心控制多壳QD中壳的厚度来减少小(约7 nm)QD中闪烁的“金锁”效应。此外,通过将荧光寿命成分与QD在开启状态下所花费的时间比例相关联(无论是否应用阈值),我们发现两种闪烁的证据分别影响单个QD的平均荧光寿命。在集合和单粒子水平上对时间分辨荧光进行了全面的表征,使我们能够提出一个详细的物理模型,该模型涉及耦合的短寿命界面陷阱状态和长寿命表面陷阱状态。该模型强调了一种通过平衡诱导晶格应变的大小来减少小QD中的QD闪烁的策略,这会导致在内壳和外壳之间形成界面陷阱态,并且限制电位决定了界面的可及性陷阱状态是。在保持较小的总体QD尺寸的同时减少闪烁的方法以及使用ZnS的无Cd外壳的组合将在广泛的应用中有用,特别是对于高级生物成像。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号