...
首页> 外文期刊>ACS nano >Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage
【24h】

Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage

机译:柔性氮掺杂SiC纳米阵列,用于超快电容储能

获取原文
获取原文并翻译 | 示例
           

摘要

The current trend with integrated energy-storage units in portable electronics lies in continuous advancements in nanostructured materials, thin-film manufacture technologies, and device architectures with enhanced functionality and reliability of existing components. Despite this, it is still challenging to provide cost-efficient solution to further improve the energy and power densities and cyclability of supercapacitors (SCs), especially at ultrafast rates while maintaining their environmentally friendly and even well-run at arbitrary harsh environments character. In this contribution, we report the fabrication of quasi-aligned single crystalline 3C-SiC nanowire (3C-SiCNW) array with tailored shapes and nitrogen-doping (N-doping). The resultant large-scale SiCNWs were directly grown on the surface of a flexible carbon fabric via a simple chemical vapor deposition method. We found that the SC performance of SiCNW arrays can be substantially enhanced by nitrogen doping, which could favor a more localized impurity state near the conduction band edge that greatly improves the quantum capacitance and hence increases the bulk capacitance and the high-power capability. The measured areal capacitances are higher with values of 4.8 and 4.7 mF cm(-2), in aqueous and gel electrolytes, respectively. The all-solid-state flexible textile-based SCs (TSCs) made with these electrodes are mechanically robust under bent and twisted states. Further, they show a power density of 72.3 mW cm(-2) that is higher than that of electrolytic capacitors, and an energy density of 1.2 x 10(-4) MW.h cm(-2), in association with superior rate ability, cyclability, and being environmentally friendly. Such SiCNW-TSC devices allow for operations at ultrahigh rate up to 30 V s(-1), 2 orders of magnitude higher than that of conventional supercapacitors. All these data are comparable to the reported results for 1D nanostructure-based carbon nanotubes (CNTs) or graphenes, thus showing the promising application as large-area flexible textile electronics.
机译:便携式电子产品中集成储能单元的当前趋势在于,纳米结构材料,薄膜制造技术以及具有增强的现有组件功能性和可靠性的设备架构的不断发展。尽管如此,提供具有成本效益的解决方案来进一步改善超级电容器(SC)的能量和功率密度以及可循环性仍然是一项挑战,特别是在超快速率下,同时还要保持它们的环境友好性,甚至在任意恶劣环境下都能保持良好运行。在这项贡献中,我们报告了具有定制形状和氮掺杂(N掺杂)的准对准单晶3C-SiC纳米线(3C-SiCNW)阵列的制造。通过简单的化学气相沉积法将所得的大规模SiCNW直接生长在柔性碳纤维织物的表面上。我们发现,通过氮掺杂可以大大提高SiCNW阵列的SC性能,这可能有利于在导带边缘附近出现更局限的杂质状态,从而大大改善了量子电容,从而增加了体电容和高功率能力。在水和凝胶电解质中,分别测得的面电容较高,分别为4.8和4.7 mF cm(-2)。用这些电极制成的全固态柔性纺织品基SC(TSC)在弯曲和扭曲状态下机械坚固。此外,它们的功率密度为72.3 mW cm(-2),高于电解电容器的功率密度,能量密度为1.2 x 10(-4)MW.h cm(-2),具有更高的速率能力,可骑乘性以及对环境友好。此类SiCNW-TSC器件可在高达30 V s(-1)的超高速率下运行,比常规超级电容器高2个数量级。所有这些数据与基于一维纳米结构的碳纳米管(CNT)或石墨烯的报道结果具有可比性,因此显示了作为大面积柔性纺织电子产品的广阔前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号