...
首页> 外文期刊>ACS nano >Click Addition of a DNA Thread to the N-Termini of Peptides for Their Trans location through Solid-State Nanopores
【24h】

Click Addition of a DNA Thread to the N-Termini of Peptides for Their Trans location through Solid-State Nanopores

机译:单击添加一条DNA线到肽的N末端,以便通过固态纳米孔进行转位

获取原文
获取原文并翻译 | 示例
           

摘要

Foremost among the challenges facing single molecule sequencing of proteins by nanopores is the lack of a universal method for driving proteins or peptides into nanopores. In contrast to nucleic acids, the backbones of which are uniformly negatively charged nucleotides, proteins carry positive, negative and neutral side chains that are randomly distributed. Recombinant proteins carrying a negatively charged oligonucleotide or polypeptide at the C-termini can be translocated through a alpha-hemolysin (alpha-HL) nanopore, but the required genetic engineering limits the generality of these approaches. In this present study, we have developed a chemical approach for addition of a charged oligomer to peptides so that they can be translocated through nanopores. As an example, an oligonucleotide PolyT(20) was tethered to peptides through first selectively functionalizing their N-termini with azide followed by a click reaction. The data show that the peptide-PolyT(20) conjugates translocated through nanopores, whereas the unmodified peptides did not. Surprisingly, the conjugates with their peptides tethered at the 5'-end of PolyT(20) passed the nanopores more rapidly than the PolyT(20) alone. The PolyT(20) also yielded a wider distribution of blockade currents. The same broad distribution was found for a conjugate with its peptide tethered at the 3'-end of PolyT(20), suggesting that the larger blockades (and longer translocation times) are associated with events in which the 5'-end of the PolyT(20) enters the pore first.
机译:通过纳米孔对蛋白质进行单分子测序面临的最主要挑战是缺乏将蛋白质或多肽驱动到纳米孔中的通用方法。与主链是带负电荷的核苷酸一致的核酸相反,蛋白质带有随机分布的正,负和中性侧链。 C末端带有带负电荷的寡核苷酸或多肽的重组蛋白可以通过α-溶血素(α-HL)纳米孔转移,但所需的基因工程限制了这些方法的普遍性。在本研究中,我们已经开发出一种化学方法,可将带电荷的低聚物添加到肽中,从而使它们可以通过纳米孔转移。例如,寡核苷酸PolyT(20)通过首先用叠氮化物选择性地官能化其N-末端,然后进行点击反应,将其拴系在肽上。数据表明,肽-PolyT(20)缀合物通过纳米孔易位,而未修饰的肽没有。出人意料的是,与多肽结合在PolyT(20)5'末端的结合物比单独的PolyT(20)更快通过纳米孔。 PolyT(20)还产生了更广泛的阻断电流分布。对于在肽段PolyT(20)的3'端连接的缀合物,发现了相同的广泛分布,这表明较大的封锁(和更长的转运时间)与其中PolyT 5'端的事件有关(20)首先进入毛孔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号