...
首页> 外文期刊>ACS nano >Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics
【24h】

Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics

机译:GaAs半导体上的单晶铝纳米结构,用于紫外至近红外等离子。

获取原文
获取原文并翻译 | 示例
           

摘要

Aluminum, as a metallic material for plasmonics, is of great interest because it extends the applications of surface plasmon resonance into the ultraviolet (UV) region and is superior to noble metals in natural abundance, cost, and compatibility with modern semiconductor fabrication processes. Ultrasmooth single-crystalline metallic films are beneficial for the fabrication of high-definition plasmonic nanostructures, especially complex integrated nanocircuits. The absence of surface corrugation and crystal boundaries also guarantees superior optical properties and applications in nanolasers. Here, we present UV to near-infrared plasmonic resonance of single-crystalline aluminum nanoslits and nanoholes. The high-definition nanostructures are fabricated with focused ion-beam milling into an ultrasmooth single-crystalline aluminum film grown on a semiconducting GaAs substrate with a molecular beam epitaxy method. The single-crystalline aluminum film shows improved reflectivity and reduced two-photon photoluminescence (TPPL) due to the ultrasmooth surface. Both linear scattering and nonlinear TPPL are studied in detail. The nanoslit arrays show clear Fano-like resonance, and the nanoholes are found to support both photonic modes and localized surface plasmon resonance. We also found that TPPL generation is more efficient when the excitation polarization is parallel rather than perpendicular to the edge of the aluminum film. Such a counterintuitive phenomenon is attributed to the high refractive index of the GaAs substrate. We show that the polarization of TPPL from aluminum preserves the excitation polarization and is independent of the crystal orientation of the film or substrate. Our study gains insight into the optical property of aluminum nanostructures on a high-index semiconducting GaAs substrate and illustrates a practical route to implement plasmonic devices onto semiconductors for future hybrid nanodevices.
机译:铝作为等离子激元的金属材料备受关注,因为它将表面等离振子共振的应用范围扩展到了紫外线(UV)区域,并且在自然丰度,成本以及与现代半导体制造工艺的兼容性方面均优于贵金属。超光滑的单晶金属膜有利于制造高清等离激元纳米结构,尤其是复杂的集成纳米电路。没有表面波纹和晶体边界也保证了卓越的光学性能和在纳米激光中的应用。在这里,我们介绍了紫外到单晶铝纳米缝和纳米孔的近红外等离子体共振。通过聚焦离子束铣削,利用分子束外延方法将高清晰度纳米结构加工成生长在半导体GaAs衬底上的超光滑单晶铝膜。由于超光滑表面,单晶铝膜显示出改善的反射率和减少的两光子光致发光(TPPL)。详细研究了线性散射和非线性TPPL。纳米缝阵列显示出清晰的Fano类共振,并且发现纳米孔既支持光子模式又支持局部表面等离子体共振。我们还发现,当激发极化平行于铝膜的边缘而不是垂直于铝膜的边缘时,TPPL的产生效率更高。这种违反直觉的现象归因于GaAs衬底的高折射率。我们表明,铝的TPPL极化保留了激发极化,并且与薄膜或基材的晶体取向无关。我们的研究深入了解了高折射率半导体GaAs衬底上的铝纳米结构的光学特性,并阐明了将等离激元器件实施到半导体上以用于未来的混合纳米器件的实用途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号