...
首页> 外文期刊>ACS nano >Discriminating the states of matter in metallic nanoparticle transformations: What are we missing?
【24h】

Discriminating the states of matter in metallic nanoparticle transformations: What are we missing?

机译:区分金属纳米粒子转变中的物质状态:我们缺少什么?

获取原文
获取原文并翻译 | 示例
           

摘要

A limiting factor in assessing the risk of current and emerging nanomaterials in biological and environmental systems is the ability to accurately detect and characterize their size, shape, and composition in broad product distributions and complex media. Asymmetric flow field-flow fractionation (A4F) is capable of separation without stationary phase interactions or large applied forces. Here, we demonstrate unprecedented A4F fractionation of metallic nanoclusters with core diameters near 1 nm and with high resolution. The isolated nanocluster populations were characterized online with UV-vis absorption and inductively coupled plasma mass spectrometry (ICP-MS). We apply our methodology to a model system, poly(N-vinyl-2- pyrrolidone)-protected silver nanoparticles with an excess of tripeptide - glutathione (GSH). The temporal evolution of the initial silver nanoparticle distribution in the presence of excess GSH results in the appearance and persistence of a continuum of matter states (e.g., Ag~+ nanoclusters and nanoparticles) that could be fractionated with A4F, characterized by their optical signatures and diffusion coefficients, and quantified with ICP-MS. The results suggest that our methodology is generally applicable to metallic systems when appropriate online detection is coupled to the A4F. Because we extend the capability of the coupled A4F system to reliably detect, characterize, and quantify metallic populations in the sub-5 nm regime, the opportunity exists to survey the formation and transformation products of nanomaterials in more relevant biological and environmental systems. Thus, individually assessing the risks associated with specific ion, nanocluster, and nanoparticle populations is achievable, where such populations may have previously been misrepresented.
机译:评估生物和环境系统中当前和新兴纳米材料风险的限制因素是能够在广泛的产品分布和复杂介质中准确检测和表征其尺寸,形状和组成的能力。非对称流场-流分馏(A4F)能够分离,而不会发生固定相相互作用或施加较大的作用力。在这里,我们展示了核直径接近1 nm且具有高分辨率的金属纳米簇的空前A4F分馏。使用紫外可见吸收和电感耦合等离子体质谱法(ICP-MS)在线表征分离的纳米簇种群。我们将我们的方法应用于模型系统,即具有过量三肽-谷胱甘肽(GSH)的聚(N-乙烯基-2-吡咯烷酮)保护的银纳米颗粒。在存在过量GSH的情况下,初始银纳米颗粒分布的时间演变会导致连续的物质状态(例如,Ag〜+纳米团簇和纳米颗粒)的出现和持续存在,这些物质状态可以用A4F分级,其光学特征为扩散系数,并使用ICP-MS进行定量。结果表明,当适当的在线检测与A4F耦合时,我们的方法通常适用于金属系统。由于我们扩展了耦合A4F系统的功能,可在5 nm以下范围可靠地检测,表征和量化金属种群,因此有机会在更相关的生物和环境系统中研究纳米材料的形成和转化产物。因此,可以实现单独评估与特定离子,纳米团簇和纳米颗粒种群有关的风险,而这些种群以前可能被曲解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号