...
首页> 外文期刊>ACS nano >Mechanistic Influence of Nanometer Length-Scale Surface Chemistry on DNA Hybridization
【24h】

Mechanistic Influence of Nanometer Length-Scale Surface Chemistry on DNA Hybridization

机译:纳米尺度尺度表面化学对DNA杂交的机理影响

获取原文
获取原文并翻译 | 示例
           

摘要

Hybridization of surface-immobilized oligonucleotides to their complementary counterparts is central to the rational design of novel nanodevices and DNA sensors. In this study, we have adopted a unified approach of combining sensing experiments with molecular dynamics simulations to characterize the hybridization of a 23 nucleotide long single-strand probe DNA tethered to a gold surface. Experiments indicate significant conformational changes of DNA in close vicinity (similar to 1 nm) of the gold surface upon hybridization and also conformational heterogeneity within hybridized DNA, consistent with simulation results. Simulations show that the conformational heterogeneity on a gold surface arises due to stabilization of surface-adsorbed partial and full duplexes, resulting in impeded hybridization in comparison to what observed on a repulsive surface. Furthermore, these simulations indicate that hybridization could be improved by tuning the nonspecific adsorption on a nanopattemed surface with an optimal patterning length. Simulations were performed on the probe tethered to gold nanodots of varying (2-8 nm) diameter. An improved hybridization of the present probe sequence was only observed for the 6 nm gold dots patterned on a repulsive surface. Results reveal that the 2D nanoconfinement provided by the 6 nm gold dot is optimal for reducing conformational heterogeneity for the specific sequence used in this study. Thus, improved DNA hybridization can be achieved on a gold nanodot patterned repulsive surface, where the optimal dot diameter will depend on the probe length and sequence. In summary, this study provides mechanistic insights onto hybridization on gold and offers a unique method toward improved hybridization on a nanopattemed surface with an optimized patterning length.
机译:表面固定的寡核苷酸与其互补对应物的杂交是新型纳米器件和DNA传感器合理设计的关键。在这项研究中,我们采用了统一的方法,将传感实验与分子动力学模拟相结合,以表征23个核苷酸长的单链探针DNA杂交到金表面的杂交特征。实验表明,杂交后,金表面附近(近似于1 nm)的DNA发生了显着的构象变化,并且杂交后的DNA内的构象异质性与模拟结果一致。模拟表明,金表面上的构象异质性是由于表面吸附的部分和全部双链体的稳定而产生的,与排斥表面上观察到的杂交相比,杂交受到了阻碍。此外,这些模拟表明,可以通过以最佳图案长度调节纳米图案表面上的非特异性吸附来改善杂交。在拴系到直径变化(2-8 nm)的金纳米点的探针上进行了模拟。仅对于在排斥表面上构图的6nm金点,观察到本探针序列的改进的杂交。结果表明,对于本研究中使用的特定序列,由6 nm金点提供的2D纳米约束是降低构象异质性的最佳方法。因此,可以在金纳米点图案排斥表面上实现改进的DNA杂交,其中最佳点直径取决于探针长度和序列。总而言之,这项研究为在金上进行杂交提供了机械方面的见解,并提供了一种独特的方法来改进纳米图案表面上具有最佳图案长度的杂交。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号