...
首页> 外文期刊>ACS nano >n- and p-Type Doping Phenomenon by Artificial DNA and M-DNA on Two-Dimensional Transition Metal Dichalcogenides
【24h】

n- and p-Type Doping Phenomenon by Artificial DNA and M-DNA on Two-Dimensional Transition Metal Dichalcogenides

机译:二维过渡金属双硫属元素上的人工DNA和M-DNA引起的n型和p型掺杂现象

获取原文
获取原文并翻译 | 示例
           

摘要

Deoxyribonucleic acid (DNA) and two-dimensional (2D) transition metal dichalcogenide (TMD) nanotechnology holds great potential for the development of extremely small devices with increasingly complex functionality. However, most current research related to DNA is limited to crystal growth and synthesis. In addition, since controllable doping methods like ion implantation can cause fatal crystal damage to 2D TMD materials, it is very hard to achieve a low-level doping concentration (nondegenerate regime) on TMD in the present state of technology. Here, we report a nondegenerate doping phenomenon for TMD materials (MoS2 and WSe2, which represent n- and p-channel materials, respectively) using DNA and slightly modified DNA by metal ions (Zn2+, Ni2+, Co2+, and Cu2+), named as M-DNA. This study is an example of interdisciplinary convergence research between DNA nanotechnology and TMD-based 2D device technology. The phosphate backbone (PO4) in DNA attracts and holds hole carriers in the TMD region, n-doping the TMD films. Conversely, M-DNA nanostructures, which are functionalized by intercalating metal ions, have positive dipole moments and consequently reduce the electron carrier density of TMD materials, resulting in p-doping phenomenon. N-doping by DNA occurs at similar to 6.4 x 10(1)0 cm(-2) on MoS2 and similar to 7.3 x 10(9) cm(-2) on WSe2, which is uniform across the TMD area. p-Doping which is uniformly achieved by M-DNA occurs between 2.3 x 10(10) and 5.5 x 10(10) cm(-2) on MoS2 and between 2.4 x 10(10) and 5.0 x 10(10) cm(-2) on WSe2. These doping levels are in the nondegenerate regime, allowing for the proper design of performance parameters of TMD-based electronic and optoelectronic devices (V-TH, on-/off-currents, field-effect mobility, photoresponsivity, and detectivity). In addition, by controlling the metal ions used, the p-doping level of TMD materials, which also influences their performance parameters, can be controlled. This interdisciplinary convergence research will allow for the successful integration of future layered semiconductor devices requiring extremely small and very complicated structures.
机译:脱氧核糖核酸(DNA)和二维(2D)过渡金属二硫化碳(TMD)纳米技术在开发功能日益复杂的超小型设备方面具有巨大潜力。但是,当前有关DNA的大多数研究仅限于晶体生长和合成。另外,由于诸如离子注入之类的可控掺杂方法可能对2D TMD材料造成致命的晶体破坏,因此在目前的技术状态下,很难在TMD上实现低水平的掺杂浓度(非简并状态)。在这里,我们报告了使用金属离子和经金属离子(Zn2 +,Ni2 +,Co2 +和Cu2 +)稍微修饰的DNA对TMD材料(MoS2和WSe2,分别代表n和p沟道材料)的非简并掺杂现象,命名为M-DNA。这项研究是DNA纳米技术与基于TMD的2D装置技术之间跨学科融合研究的一个示例。 DNA中的磷酸盐骨架(PO4)在TMD区域吸引并保持空穴载流子,对TMD膜进行n掺杂。相反,通过嵌入金属离子而功能化的M-DNA纳米结构具有正偶极矩,因此会降低TMD材料的电子载流子密度,从而导致p掺杂现象。通过DNA进行的N掺杂在MoS2上类似于6.4 x 10(1)0 cm(-2),而在WSe2上类似于7.3 x 10(9)cm(-2),在TMD区域上是均匀的。在MoS2上,由M-DNA均匀实现的p掺杂发生在2.3 x 10(10)和5.5 x 10(10)cm(-2)之间,在2.4 x 10(10)和5.0 x 10(10)cm( -2)在WSe2上。这些掺杂水平处于非简并状态,允许对基于TMD的电子和光电设备的性能参数(V-TH,通/断电流,场效应迁移率,光响应性和检测性)进行适当的设计。另外,通过控制所使用的金属离子,可以控制TMD材料的p掺杂水平,这也影响了它们的性能参数。这项跨学科的融合研究将使未来需要极小且非常复杂的结构的分层半导体器件得以成功集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号