...
首页> 外文期刊>ACS nano >Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods
【24h】

Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods

机译:分子距离和等离激元波长依赖的荧光分子绑定到二氧化硅涂层的金纳米棒。

获取原文
获取原文并翻译 | 示例
           

摘要

Plasmonic nanoparticles can strongly interact with adjacent fluorophores, resulting in plasmon-enhanced fluorescence or fluorescence quenching. This dipolar coupling is dependent upon nanoparticle composition, distance between the fluorophore and the plasmonic surface, the transition dipole orientation, and the degree of spectral overlap between the fluorophore's absorbance/emission and the surface plasmon band of the nanoparticles. In this work, we examine the distance and plasmon wavelength dependent fluorescence of an infrared dye (“IRDye”) bound to silica-coated gold nanorods. Nanorods with plasmon band maxima ranging from 530 to 850 nm are synthesized and then coated with mesoporous silica shells 11-26 nm thick. IRDye is covalently attached to the nanoparticle surface via a click reaction. Steady-state fluorescence measurements demonstrate plasmon wavelength and silica shell thickness dependent fluorescence emission. Maximum fluorescence intensity, with approximately 10-fold enhancement, is observed with 17 nm shells when the nanorod plasmon maximum is resonant with IRDye absorption. Time-resolved photoluminescence reveals multiexponential decay and a sharp reduction in fluorescence lifetime with decreasing silica shell thickness and when the plasmon maximum is closer to IRDye absorption/emission. Control experiments are carried out to confirm that the observed changes in fluorescence are due to plasmonic interactions, is simply surface attachment. There is no change in fluorescence intensity or lifetime when IRDye is bound to mesoporous silica nanoparticles. In addition, IRDye loading is limited to maintain a distance between dye molecules on the surface to more than 9 nm, well above the F?rster radius. This assures minimal dye-dye interactions on the surface of the nanoparticles.
机译:等离子体纳米粒子可以与相邻的荧光团强烈相互作用,导致等离子体增强的荧光或荧光猝灭。这种偶极耦合取决于纳米粒子的组成,荧光团与等离激元表面之间的距离,过渡偶极子取向以及荧光团的吸收/发射与纳米粒子的表面等离激元带之间的光谱重叠程度。在这项工作中,我们检查了与二氧化硅涂层的金纳米棒结合的红外染料(“ IRDye”)的距离和等离激元波长相关的荧光。合成具有最大等离激元能带范围为530至850 nm的纳米棒,然后涂覆11-26 nm厚的中孔二氧化硅壳。 IRDye通过点击反应共价附于纳米颗粒表面。稳态荧光测量表明等离激元波长和二氧化硅壳厚度取决于荧光发射。当纳米棒的等离激元最大值与IRDye吸收共振时,在17 nm壳层上观察到最大荧光强度,增强了约10倍。时间分辨的光致发光显示出多指数衰减,并且荧光寿命随着二氧化硅壳厚度的减少以及等离激元最大值接近IRDye吸收/发射而急剧降低。进行对照实验以确认观察到的荧光变化是由于等离子体相互作用,仅仅是表面附着。当IRDye与中孔二氧化硅纳米粒子结合时,荧光强度或寿命没有变化。此外,IRDye的加载受到限制,以使表面上的染料分子之间的距离保持在9 nm以上,远高于Fster半径。这确保了纳米颗粒表面上最小的染料-染料相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号