...
首页> 外文期刊>ACS nano >Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes
【24h】

Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes

机译:固态电解质氧氮化磷锂作为3D高容量转换电极的保护性纳米包覆层

获取原文
获取原文并翻译 | 示例
           

摘要

Materials that undergo conversion reactions to form different materials upon lithiation typically offer high specific capacity for energy storage applications such as Li ion batteries. However, since the reaction products often involve complex mixtures of electrically insulating and conducting particles and significant changes in volume and phase, the reversibility of conversion reactions is poor, preventing their use in rechargeable (secondary) batteries. In this paper, we fabricate and protect 3D conversion electrodes by first coating multiwalled carbon nanotubes (MWCNT) with a model conversion material, RuO2, and subsequently protecting them with conformal thin-film lithium phosphous oxynitride (LiPON), a well-known solid-state electrolyte. Atomic layer deposition is used to deposit the RuO2 and the LiPON, thus forming core double-shell MWCNT@)RuO2@LiPON electrodes as a model system. We find that the LiPON protection layer enhances cyclability of the conversion electrode, which we attribute to two factors. (1) The UPON layer provides high Li ion conductivity at the interface between the electrolyte and the electrode. (2) By constraining the electrode materials mechanically, the LiPON protection layer ensures electronic connectivity and thus conductivity during lithiation/delithiation cycles. These two mechanisms are striking in their ability to preserve capacity despite the profound changes in structure and composition intrinsic to conversion electrode materials. This LiPON-protected structure exhibits superior cycling stability and reversibility as well as decreased overpotentials compared to the unprotected core shell structure. Furthermore, even at very low lithiation potential (0.05 V), the LiPON-protected electrode largely reduces the formation of a solid electrolyte interphase.
机译:在锂化时经历转化反应以形成不同材料的材料通常为诸如锂离子电池的能量存储应用提供高比容量。但是,由于反应产物通常包含电绝缘和导电颗粒的复杂混合物,并且体积和相的变化很大,因此转化反应的可逆性很差,从而阻止了它们在可充电(二次)电池中的使用。在本文中,我们首先通过使用模型转换材料RuO2涂覆多壁碳纳米管(MWCNT),然后再使用保形的薄膜状磷氧氮化锂(LiPON)(一种众所周知的固体-态电解质。原子层沉积用于沉积RuO2和LiPON,从而形成核心双壳MWCNT @)RuO2 @ LiPON电极作为模型系统。我们发现LiPON保护层增强了转换电极的可循环性,这归因于两个因素。 (1)UPON层在电解质和电极之间的界面处提供高的Li离子传导性。 (2)通过机械约束电极材料,LiPON保护层可确保电子连接性,从而确保在锂化/去锂化周期中的导电性。尽管转换电极材料固有的结构和组成发生了深刻的变化,但这两种机理仍具有惊人的保持容量的能力。与未保护的核壳结构相比,这种受LiPON保护的结构表现出优异的循环稳定性和可逆性,并降低了过电势。此外,即使在非常低的锂化电位(0.05V)下,LiPON保护的电极也大大减少了固体电解质界面的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号