...
首页> 外文期刊>ACS nano >Significant Quantum Effects in Hydrogen Activation
【24h】

Significant Quantum Effects in Hydrogen Activation

机译:氢活化中的重要量子效应

获取原文
获取原文并翻译 | 示例
           

摘要

Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H_2 up to~190 K and for D_2 up to~140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H_2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D_2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.
机译:分子氢的解离是许多化学,生物学和物理过程中的重要步骤。由于氢的质量轻,人们认识到量子效应通常对其反应性很重要。但是,了解量子效应如何影响氢的反应性仍处于起步阶段。在这里,我们使用定义明确的Pd / Cu(111)合金检查了这个问题,该合金允许在较宽的温度范围内,在各个Pd原子表面部位检查氢和氘分子的活化。比较氢气和氘的吸收随温度变化的实验表明,这两种物质的行为完全不同。在较低的样品温度下,氢活化速率增加,而氘的活化随着温度降低而减慢。涉及量子核效应的密度泛函理论模拟表明,在高达190 K的H_2和高达〜140 K的D_2中,通过解离势垒的隧穿是普遍的。动力学蒙特卡洛模拟表明,对H_2的解离的有效势垒是如此之低,以至于表面上的氢吸收仅受热力学限制,而D_2解离过程受动力学控制。这些数据说明了这种普遍存在且看似简单的化学过程的复杂性和固有的量子性质。使用其他类似方法在其他系统中检查这些效应可能会发现可以利用量子效应的温度范围,从而更好地控制表面的键断裂过程,并揭示出有用的化学物质,例如选择性键活化或同位素分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号